IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v159y2017icp206-213.html
   My bibliography  Save this article

Using field feedback to estimate failure rates of safety-related systems

Author

Listed:
  • Brissaud, Florent

Abstract

The IEC 61508 and IEC 61511 functional safety standards encourage the use of field feedback to estimate the failure rates of safety-related systems, which is preferred than generic data. In some cases (if “Route 2H†is adopted for the "hardware safety integrity constraints†), this is even a requirement. This paper presents how to estimate the failure rates from field feedback with confidence intervals, depending if the failures are detected on-line (called "detected failures", e.g. by automatic diagnostic tests) or only revealed by proof tests (called "undetected failures"). Examples show that for the same duration and number of failures observed, the estimated failure rates are basically higher for “undetected failures†because, in this case, the duration observed includes intervals of time where it is unknown that the elements have failed. This points out the need of using a proper approach for failure rates estimation, especially for failures that are not detected on-line. Then, this paper proposes an approach to use the estimated failure rates, with their uncertainties, for PFDavg and PFH assessment with upper confidence bounds, in accordance with IEC 61508 and IEC 61511 requirements. Examples finally show that the highest SIL that can be claimed for a safety function can be limited by the 90% upper confidence bound of PFDavg or PFH. The requirements of the IEC 61508 and IEC 61511 relating to the data collection and analysis should therefore be properly considered for the study of all safety-related systems.

Suggested Citation

  • Brissaud, Florent, 2017. "Using field feedback to estimate failure rates of safety-related systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 206-213.
  • Handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:206-213
    DOI: 10.1016/j.ress.2016.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F Brissaud & A Barros & C Bérenguer, 2010. "Handling parameter and model uncertainties by continuous gates in fault tree analyses," Journal of Risk and Reliability, , vol. 224(4), pages 253-265, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Taghi Tahooneh & Reza Dashti, 2022. "A new model for calculating rational failure rates based on network assets worth," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2221-2233, October.
    2. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:206-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.