IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v153y2016icp110-121.html
   My bibliography  Save this article

An efficient modularized sample-based method to estimate the first-order Sobol׳ index

Author

Listed:
  • Li, Chenzhao
  • Mahadevan, Sankaran

Abstract

Sobol׳ index is a prominent methodology in global sensitivity analysis. This paper aims to directly estimate the Sobol׳ index based only on available input–output samples, even if the underlying model is unavailable. For this purpose, a new method to calculate the first-order Sobol׳ index is proposed. The innovation is that the conditional variance and mean in the formula of the first-order index are calculated at an unknown but existing location of model inputs, instead of an explicit user-defined location. The proposed method is modularized in two aspects: 1) index calculations for different model inputs are separate and use the same set of samples; and 2) model input sampling, model evaluation, and index calculation are separate. Due to this modularization, the proposed method is capable to compute the first-order index if only input–output samples are available but the underlying model is unavailable, and its computational cost is not proportional to the dimension of the model inputs. In addition, the proposed method can also estimate the first-order index with correlated model inputs. Considering that the first-order index is a desired metric to rank model inputs but current methods can only handle independent model inputs, the proposed method contributes to fill this gap.

Suggested Citation

  • Li, Chenzhao & Mahadevan, Sankaran, 2016. "An efficient modularized sample-based method to estimate the first-order Sobol׳ index," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 110-121.
  • Handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:110-121
    DOI: 10.1016/j.ress.2016.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    2. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    3. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    4. Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
    5. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    6. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    7. Weirs, V. Gregory & Kamm, James R. & Swiler, Laura P. & Tarantola, Stefano & Ratto, Marco & Adams, Brian M. & Rider, William J. & Eldred, Michael S., 2012. "Sensitivity analysis techniques applied to a system of hyperbolic conservation laws," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 157-170.
    8. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    3. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    4. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Wei, Daijun & Zhang, Xiaoge & Mahadevan, Sankaran, 2018. "Measuring the vulnerability of community structure in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 41-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    2. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    3. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    5. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    6. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    8. Goda, Takashi, 2021. "A simple algorithm for global sensitivity analysis with Shapley effects," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Mara, Thierry Alex, 2009. "Extension of the RBD-FAST method to the computation of global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1274-1281.
    10. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    11. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    12. Plischke, Elmar, 2012. "An adaptive correlation ratio method using the cumulative sum of the reordered output," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 149-156.
    13. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    14. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    15. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    16. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    17. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    18. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    19. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    20. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:110-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.