IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v116y2017icp45-52.html
   My bibliography  Save this article

Life cycle assessment of non-alcoholic single-serve polyethylene terephthalate beverage bottles in the state of California

Author

Listed:
  • Kang, DongHo
  • Auras, Rafael
  • Singh, Jay

Abstract

The aim of this study was to evaluate the environmental burden of non-alcoholic single serving size polyethylene terephthalate beverage bottle systems in the state of California through a life cycle assessment model. A mass flow of polyethylene terephthalate beverage bottle in the U.S., and the state of California is drawn as a Sankey diagram. The life cycle assessment model is designed with five main sections; material production, polyethylene terephthalate bottle production, waste management, environmental benefit, and transportation. The scope is cradle-to-grave with a representative functional unit as the amount of polyethylene terephthalate necessary to deliver 1000L of beverage, specifically in carbonated soda, water and tea. To identify the strategy to reduce the environmental burden of the overall system, several scenarios are established as the management intervention by reducing two different polyethylene terephthalate waste sources; post-consumer polyethylene terephthalate bottle collection waste, scenario ‘c’, and yield loss of the reclamation process, scenario ‘r’. The contribution analysis indicates that the polyethylene terephthalate bottle production is the highest environmental burden source in most of the impact indicator. Scenario ‘r’ is translated in higher environmental benefit than the pursuit of scenario ‘c’ in every impact indicator. The results show that increasing efficiency of the reclamation process provides a larger environmental benefit than improving the post-consumer bottle collection system for polyethylene terephthalate beverage bottle in the state of California. The results can be used to comprehend the main environmental burden of polyethylene terephthalate bottles and to optimize their recovery in the other 49 U.S. states and around the world.

Suggested Citation

  • Kang, DongHo & Auras, Rafael & Singh, Jay, 2017. "Life cycle assessment of non-alcoholic single-serve polyethylene terephthalate beverage bottles in the state of California," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 45-52.
  • Handle: RePEc:eee:recore:v:116:y:2017:i:c:p:45-52
    DOI: 10.1016/j.resconrec.2016.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chilton, Tom & Burnley, Stephen & Nesaratnam, Suresh, 2010. "A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1241-1249.
    2. Coelho, T.M. & Castro, R. & Gobbo, J.A., 2011. "PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 291-299.
    3. Tatiene Coelho & Rosani Castro & Jose Alcides Gobbo Junior, 2012. "PET Containers in Brazil: A Logistics Model for Post-Consumer Waste Recycling," Chapters, in: Enri Damanhuri (ed.), Post-Consumer Waste Recycling and Optimal Production, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameh Al-Shihabi & Ridvan Aydin & Zehra Canan Araci & Fikri Dweiri & Mohammed Obeidat & Mohammad Fayez Al Bataineh, 2024. "Abolishing Single-Use Plastic Water Bottles in Dubai Hotels as a Voluntary Act—Scenarios and Environmental Impacts," Sustainability, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabbour, Charbel José Chiappetta, 2013. "Environmental training in organisations: From a literature review to a framework for future research," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 144-155.
    2. Michael Martin & Sjoerd Herlaar & Aiden Jönsson & David Lazarevic, 2022. "From Circular to Linear? Assessing the Life Cycle Environmental and Economic Sustainability of Steel and Plastic Beer Kegs," Circular Economy and Sustainability, Springer, vol. 2(3), pages 937-960, September.
    3. Kannan, Devika & Diabat, Ali & Alrefaei, Mahmoud & Govindan, Kannan & Yong, Geng, 2012. "A carbon footprint based reverse logistics network design model," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 75-79.
    4. Hosoda, Takamichi & Disney, Stephen M., 2018. "A unified theory of the dynamics of closed-loop supply chains," European Journal of Operational Research, Elsevier, vol. 269(1), pages 313-326.
    5. Muhammad Hammad Mushtaq & Fahad Noor & M. A. Mujtaba & Salman Asghar & Abdulfatah Abdu Yusuf & Manzoore Elahi M. Soudagar & Abrar Hussain & Mohamed Fathy Badran & Kiran Shahapurkar, 2022. "Environmental Performance of Alternative Hospital Waste Management Strategies Using Life Cycle Assessment (LCA) Approach," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    6. Hunt, Emily J. & Zhang, Chenlong & Anzalone, Nick & Pearce, Joshua M., 2015. "Polymer recycling codes for distributed manufacturing with 3-D printers," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 24-30.
    7. Johannes Gasde & Jörg Woidasky & Jochen Moesslein & Claus Lang-Koetz, 2020. "Plastics Recycling with Tracer-Based-Sorting: Challenges of a Potential Radical Technology," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    8. Kunle Ibukun Olatayo & Paul T. Mativenga & Annlizé L. Marnewick, 2023. "Plastic value chain and performance metric framework for optimal recycling," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 601-623, April.
    9. Isabella Tamine Parra Miranda & Reginaldo Fidelis & Dayanne Aline de Souza Fidelis & Luiz Alberto Pilatti & Claudia Tania Picinin, 2020. "The Integration of Recycling Cooperatives in the Formal Management of Municipal Solid Waste as a Strategy for the Circular Economy—The Case of Londrina, Brazil," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    10. Lagioia, Giovanni & Calabrò, Grazia & Amicarelli, Vera, 2012. "Empirical study of the environmental management of Italy's drinking water supply," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 119-130.
    11. Chen, Chung-Chiang & Chen, Yi-Tui, 2013. "Energy recovery or material recovery for MSW treatments?," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 37-44.
    12. Komly, Claude-Emma & Azzaro-Pantel, Catherine & Hubert, Antoine & Pibouleau, Luc & Archambault, Valérie, 2012. "Multiobjective waste management optimization strategy coupling life cycle assessment and genetic algorithms: Application to PET bottles," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 66-81.
    13. Rajendran, Saravanan & Scelsi, Lino & Hodzic, Alma & Soutis, Constantinos & Al-Maadeed, Mariam A., 2012. "Environmental impact assessment of composites containing recycled plastics," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 131-139.
    14. Tomasz Krolikowski & Roma Strulak-Wojcikiewicz & Piotr Nikonczuk & Piotr Zmuda-Trzebiatowski & Agnieszka Deja, 2020. "Small-lot Production with Additive Production Using Reverse Logistics and IT Solutions in COVID-19 Era," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 569-579.
    15. Joana C. Prata & Ana L. Patrício Silva & João P. da Costa & Catherine Mouneyrac & Tony R. Walker & Armando C. Duarte & Teresa Rocha-Santos, 2019. "Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution," IJERPH, MDPI, vol. 16(13), pages 1-19, July.
    16. Coelho, T.M. & Castro, R. & Gobbo, J.A., 2011. "PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 291-299.
    17. Balcazar, Juan Galvarino Cerda & Dias, Rubens Alves & Balestieri, José Antonio Perrella, 2013. "Analysis of hybrid waste-to-energy for medium-sized cities," Energy, Elsevier, vol. 55(C), pages 728-741.
    18. Ilias P. Vlachos, 2014. "Reverse food logistics during the product life cycle," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 9(1/2), pages 49-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:116:y:2017:i:c:p:45-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.