IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v116y2017icp15-31.html
   My bibliography  Save this article

Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability

Author

Listed:
  • Santos, João
  • Flintsch, Gerardo
  • Ferreira, Adelino

Abstract

Stakeholders in the pavement sector have been seeking new engineering solutions to move towards more sustainable pavement management practices. The general approaches for improving pavement sustainability include, among others, reducing virgin binder and virgin aggregate content in HMA and WMA mixtures, reducing energy consumed and emissions generated in mixtures production, applying in-place recycling techniques, and implementing preventive treatments. In this study, a comprehensive and integrated pavement life cycle costing- life cycle assessment model was developed to investigate, from a full life cycle perspective, the extent to which several pavement engineering solutions, namely hot in-plant recycling mixtures, WMA, cold central plant recycling and preventive treatments, are efficient in improving the environmental and economic dimensions of pavement infrastructure sustainability, when applied either separately or in combination, in the construction and management of a road pavement section located in Virginia, USA. Furthermore, in order to determine the preference order of alternative scenarios, a multicriteria decision analysis method was applied. The results showed that the implementation of a recycling-based maintenance and rehabilitation strategy where the asphalt mixtures are of type hot-mix asphalt containing 30% RAP, best suits the multidimensional and conflicting interests of decision-makers. This outcome was found to be robust even when different design and performance scenarios of the mixtures and type of treatments are considered.

Suggested Citation

  • Santos, João & Flintsch, Gerardo & Ferreira, Adelino, 2017. "Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 15-31.
  • Handle: RePEc:eee:recore:v:116:y:2017:i:c:p:15-31
    DOI: 10.1016/j.resconrec.2016.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Hofstetter & Arthur Braunschweig & Thomas Mettier & Ruedi Müller‐Wenk & Olaf Tietje, 1999. "The Mixing Triangle: Correlation and Graphical Decision Support for LCA‐based Comparisons," Journal of Industrial Ecology, Yale University, vol. 3(4), pages 97-115, October.
    2. Aurangzeb, Qazi & Al-Qadi, Imad L. & Ozer, Hasan & Yang, Rebekah, 2014. "Hybrid life cycle assessment for asphalt mixtures with high RAP content," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 77-86.
    3. Tatari, Omer & Nazzal, Munir & Kucukvar, Murat, 2012. "Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 18-24.
    4. Modarres, Amir & Rahimzadeh, Majid & Zarrabi, Mohsen, 2014. "Field investigation of pavement rehabilitation utilizing cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 112-120.
    5. Alberta C. Carpenter & Kevin H. Gardner, 2009. "Use of Industrial By‐Products in Urban Roadway Infrastructure: Argument for Increased Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 965-977, December.
    6. Sherif, Yosef S & Kolarik, William J, 1981. "Life cycle costing: Concept and practice," Omega, Elsevier, vol. 9(3), pages 287-296.
    7. Vidal, Rosario & Moliner, Enrique & Martínez, Germán & Rubio, M. Carmen, 2013. "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 101-114.
    8. Sayagh, Shahinaz & Ventura, Anne & Hoang, Tung & François, Denis & Jullien, Agnès, 2010. "Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 348-358.
    9. Thenoux, Guillermo & González, Álvaro & Dowling, Rafael, 2007. "Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 325-339.
    10. Shirodkar, Prashant & Mehta, Yusuf & Nolan, Aaron & Dubois, Eric & Reger, Darren & McCarthy, Leslie, 2013. "Development of blending chart for different degrees of blending of RAP binder and virgin binder," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 156-161.
    11. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayara Sarisariyama Siverio Lima & Christina Makoundou & Cesare Sangiorgi & Florian Gschösser, 2022. "Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    2. Karen Castañeda & Omar Sánchez & Rodrigo F. Herrera & Guillermo Mejía, 2022. "Highway Planning Trends: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-33, May.
    3. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    4. Leonardo Sierra-Varela & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody & Leonardo Lleuful-Cruz & Noe Villegas-Flores & Álvaro Filun-Santana, 2023. "Determination of the Social Contribution of Sustainable Asphalt Mixes," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    5. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    6. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    7. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    8. Anne de Bortoli & Adélaïde Féraille & Fabien Leurent, 2022. "Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies," Post-Print hal-04483847, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    2. Zaumanis, Martins & Mallick, Rajib B. & Frank, Robert, 2014. "100% recycled hot mix asphalt: A review and analysis," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 230-245.
    3. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    4. Chen, Weidong & Wu, Fangyong & Geng, Wenxin & Yu, Guanyi, 2017. "Carbon emissions in China’s industrial sectors," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 264-273.
    5. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    6. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    7. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    8. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    9. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    10. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    11. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    12. Airebule, Palizha & Cheng, Haitao & Ishikawa, Jota, 2023. "Assessing carbon emissions embodied in international trade based on shared responsibility," Journal of the Japanese and International Economies, Elsevier, vol. 68(C).
    13. Saade, Marcella Ruschi Mendes & Silva, Maristela Gomes da & Gomes, Vanessa, 2015. "Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 40-47.
    14. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    15. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    16. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    17. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    18. Yoann Verger, 2015. "Sraffa and ecological economics: review of the literature," Working Papers hal-01182894, HAL.
    19. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    20. Daniel Croner & Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and NationalEnergy Intensity Trends," The Energy Journal, , vol. 39(2), pages 103-122, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:116:y:2017:i:c:p:15-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.