IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v114y2016icp32-41.html
   My bibliography  Save this article

Performance evaluation and benchmarking of global waste management systems

Author

Listed:
  • Zaman, Atiq Uz
  • Swapan, Mohammad Shahidul Hasan

Abstract

This paper presents the environmental and economic benefits of global waste management systems in the context of zero waste practices. The study analysed the waste management performance of 168 countries around the globe and evaluated their performance using the zero waste tool. The Zero Waste Index measures the material substitution potential of waste. This is done by taking into account the amount of materials recovered from waste, which potentially substitute the demand for virgin materials. By substituting virgin materials’ demand, we could potentially substitute the demand for energy, water, and avoid greenhouse gas (GHG) emission. The study analysed waste management systems in 168 countries and presented its findings using the mapping techniques of Geographic Information Systems (GIS). The findings of the study suggested that globally, an average person generated around 435kg of waste each year, out of which an estimated 50kg of materials (paper, plastic, metal, glass and others) potentially substitute the demand for the extraction of virgin materials. By substituting the demand for virgin materials, through ‘zero waste activities’, an average person could potentially save around 216kWh of energy, 0.05kg GHG and 36L of processed water. Globally, each person would then potentially save around $61.3 annually, of which $17 would arise from materials substitution, and $44 from energy substitution. The study suggested that energy substitution potentially contributed over twice the economic benefits as materials substitution in resource recovery from waste.

Suggested Citation

  • Zaman, Atiq Uz & Swapan, Mohammad Shahidul Hasan, 2016. "Performance evaluation and benchmarking of global waste management systems," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 32-41.
  • Handle: RePEc:eee:recore:v:114:y:2016:i:c:p:32-41
    DOI: 10.1016/j.resconrec.2016.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamasb, Tooraj & Nepal, Rabindra, 2010. "Issues and options in waste management: A social cost–benefit analysis of waste-to-energy in the UK," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1341-1352.
    2. Yuan, H.P. & Shen, L.Y. & Hao, Jane J.L. & Lu, W.S., 2011. "A model for cost–benefit analysis of construction and demolition waste management throughout the waste chain," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 604-612.
    3. Su, Jun-Pin & Chiueh, Pei-Te & Hung, Ming-Lung & Ma, Hwong-Wen, 2007. "Analyzing policy impact potential for municipal solid waste management decision-making: A case study of Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 418-434.
    4. Nakamura, Shinichiro & Kondo, Yasushi, 2006. "A waste input-output life-cycle cost analysis of the recycling of end-of-life electrical home appliances," Ecological Economics, Elsevier, vol. 57(3), pages 494-506, May.
    5. Andrew A. Lovett & Julian P. Parfitt & Julii S. Brainard, 1997. "Using GIS in Risk Analysis: A Case Study of Hazardous Waste Transport," Risk Analysis, John Wiley & Sons, vol. 17(5), pages 625-633, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    2. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    3. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    4. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    5. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.
    6. Akinade, Olugbenga O. & Oyedele, Lukumon O. & Bilal, Muhammad & Ajayi, Saheed O. & Owolabi, Hakeem A. & Alaka, Hafiz A. & Bello, Sururah A., 2015. "Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS)," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 167-176.
    7. Pablo Emilio Escamilla-García & Ana Lilia Coria-Páez & Francisco Pérez-Soto & Francisco Gutiérrez-Galicia & Carolina Caire & Blanca L. Martínez-Vargas, 2023. "Financial and Technical Evaluation of Energy Production by Biological and Thermal Treatments of MSW in Mexico City," Energies, MDPI, vol. 16(9), pages 1-14, April.
    8. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel, 2014. "Analysis of the implementation of effective waste management practices in construction projects and sites," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 99-111.
    9. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    10. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    11. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    12. Liashenko Olena & Khrushch Lesya, 2018. "Determination of the environmental tax on the basis of modified input-output Leontief-Ford model," Technology audit and production reserves, 3(41) 2018, Socionet;Technology audit and production reserves, vol. 3(4(41)), pages 41-46.
    13. Faye Duchin, 2017. "Resources for Sustainable Economic Development: A Framework for Evaluating Infrastructure System Alternatives," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    14. Shigemi Kagawa & Seiji Hashimoto & Shunsuke Managi, 2015. "Special issue: studies on industrial ecology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 361-368, July.
    15. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    16. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    17. Jie Xiong & Shuming Wang & Tsan Sheng Ng, 2021. "Robust Bilevel Resource Recovery Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2962-2992, September.
    18. Christian Reynolds & Julia Piantadosi & John Boland, 2014. "A Waste Supply-Use Analysis of Australian Waste Flows," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-16, December.
    19. Fulong Wu & David Martin, 2002. "Urban Expansion Simulation of Southeast England Using Population Surface Modelling and Cellular Automata," Environment and Planning A, , vol. 34(10), pages 1855-1876, October.
    20. Bihter Gizem Demircan & Kaan Yetilmezsoy, 2023. "A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:114:y:2016:i:c:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.