IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v93y2014icp99-111.html
   My bibliography  Save this article

Analysis of the implementation of effective waste management practices in construction projects and sites

Author

Listed:
  • Gangolells, Marta
  • Casals, Miquel
  • Forcada, Núria
  • Macarulla, Marcel

Abstract

In this paper, the implementation of effective waste management practices in construction projects and sites is analyzed, using data from a survey answered by 74 Spanish construction companies based in Catalonia. Most commonly implemented practices were found to be on-site cleanliness and order, correct storage of raw materials, and prioritization of the nearest authorized waste managers. The least widespread practices were the use of a mobile crusher on site, the creation of individualized drawings for each construction site, and the dissemination of the contents of the waste management plan to all workers, to help them to meet its requirements. Waste regulations for construction and demolition, and the corresponding construction waste management facilities, were designed before the recession in the Spanish construction sector. Current waste generation rates are still below predicted levels, and the infrastructure was designed for five times more waste generation. Even so, the percentage of reused and recycled waste currently amounts to 43%. Survey respondents highlighted various instruments and measures that would make the management of construction and demolition waste more sustainable. Most of the opportunities identified by construction firms are within the scope of government and related to a combined system of bonus and penalties and the establishment of environmental awareness and training programmes for all the stakeholders. Within the scope of authorized waste managers, firms suggested improvements such as the standardization of fees, a reduction of the time until the issue of waste management certificates, a higher number of inspections, and a change in the current model of a few large construction waste management facilities. This research is useful to better understand the current status of construction and demolition waste management in construction projects and sites. Thus, the results of this research will guide policy makers and relevant stakeholders such as contractors, clients, architects and engineers to achieve the EU target of recovering 70% of construction and demolition waste in 2020. In this sense, reliable information can help governments and professional associations to set future C&D waste management regulations, training programmes and dissemination tools, inspections, etc.

Suggested Citation

  • Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel, 2014. "Analysis of the implementation of effective waste management practices in construction projects and sites," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 99-111.
  • Handle: RePEc:eee:recore:v:93:y:2014:i:c:p:99-111
    DOI: 10.1016/j.resconrec.2014.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lachimpadi, Suresh Kumar & Pereira, Joy Jacqueline & Taha, Mohd Raihan & Mokhtar, Mazlin, 2012. "Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 96-103.
    2. Rodríguez, Gracia & Alegre, Francisco Javier & Martínez, Germán, 2007. "The contribution of environmental management systems to the management of construction and demolition waste: The case of the Autonomous Community of Madrid (Spain)," Resources, Conservation & Recycling, Elsevier, vol. 50(3), pages 334-349.
    3. Yuan, H.P. & Shen, L.Y. & Hao, Jane J.L. & Lu, W.S., 2011. "A model for cost–benefit analysis of construction and demolition waste management throughout the waste chain," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 604-612.
    4. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    5. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    6. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    7. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2009. "Attitude and behavioral factors in waste management in the construction industry of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 321-328.
    8. De Melo, Aluísio Braz & Gonçalves, Arlindo F. & Martins, Isabel M., 2011. "Construction and demolition waste generation and management in Lisbon (Portugal)," Resources, Conservation & Recycling, Elsevier, vol. 55(12), pages 1252-1264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulmalek K. Badraddin & Rahimi A. Rahman & Saud Almutairi & Muneera Esa, 2021. "Main Challenges to Concrete Recycling in Practice," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    2. Marrero, Madelyn & Puerto, Manuel & Rivero-Camacho, Cristina & Freire-Guerrero, Antonio & Solís-Guzmán, Jaime, 2017. "Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 160-174.
    3. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    4. Doussoulin, Jean Pierre & Bittencourt, Mariana, 2022. "How effective is the construction sector in promoting the circular economy in Brazil and France? : A waste input-output analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 47-58.
    5. Lu, Weisheng & Chen, Xi & Peng, Yi & Shen, Liyin, 2015. "Benchmarking construction waste management performance using big data," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 49-58.
    6. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    7. Abdulmalek K. Badraddin & Afiqah R. Radzi & Saud Almutairi & Rahimi A. Rahman, 2022. "Critical Success Factors for Concrete Recycling in Construction Projects," Sustainability, MDPI, vol. 14(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villoria Saez, Paola & del Río Merino, Mercedes & San-Antonio González, Alicia & Porras-Amores, César, 2013. "Best practice measures assessment for construction and demolition waste management in building constructions," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 52-62.
    2. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    3. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    4. Jiménez-Rivero, Ana & García-Navarro, Justo, 2017. "Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 116-123.
    5. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    6. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    7. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.
    8. Villoria Sáez, Paola & del Río Merino, Mercedes & Porras-Amores, César & San-Antonio González, Alicia, 2014. "Assessing the accumulation of construction waste generation during residential building construction works," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 67-74.
    9. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem & Karaziwan, Jalal, 2017. "Behavioral determinants towards enhancing construction waste management: A Bayesian Network analysis," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 274-284.
    10. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    11. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    12. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    13. Zhikun Ding & Xinyue Huang & Xinrui Wang & Qiaohui Chen & Jiasheng Zhang & Zezhou Wu, 2024. "Investigating the Determinants of Construction Stakeholders’ Intention to Use Construction and Demolition Waste Recycling Products Based on the S-O-R Model in China," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    14. Akinade, Olugbenga O. & Oyedele, Lukumon O. & Bilal, Muhammad & Ajayi, Saheed O. & Owolabi, Hakeem A. & Alaka, Hafiz A. & Bello, Sururah A., 2015. "Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS)," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 167-176.
    15. Nketiah, Emmanuel & Song, Huaming & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Cudjoe, Dan, 2022. "Citizens' willingness to pay for local anaerobic digestion energy: The influence of altruistic value and knowledge," Energy, Elsevier, vol. 260(C).
    16. Benson Teck Heng Lim & Bee Lan Oo & Charlie McLeod & Pengqi Yang, 2024. "Institutional and Actor Network Perspectives of Waste Management in Australia: Is the Construction Industry Prepared for a Circular Economy?," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    17. Heni Fitriani & Saheed Ajayi & Sunkuk Kim, 2022. "Analysis of the Underlying Causes of Waste Generation in Indonesia’s Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    18. Doussoulin, Jean Pierre & Bittencourt, Mariana, 2022. "How effective is the construction sector in promoting the circular economy in Brazil and France? : A waste input-output analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 47-58.
    19. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:93:y:2014:i:c:p:99-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.