IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v101y2015icp143-153.html
   My bibliography  Save this article

Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts

Author

Listed:
  • Cardoen, Dennis
  • Joshi, Piyush
  • Diels, Ludo
  • Sarma, Priyangshu M.
  • Pant, Deepak

Abstract

The growing bioeconomy sector aims to reduce the amount of waste generated and to promote the unavoidable waste generated as a resource and achieve higher levels of recycling and safe disposal. Post-harvest losses contribute to a substantial proportion of the loss that the agricultural biomass undergoes in India. It is therefore important to make an assessment of this loss and assign a certain cost to it. In this study, we have carried out an assessment of the residues that are generated in the field or on the farm at the time of harvest (for example wheat and rice straw), wastes generated as a result of post-harvest losses. In addition, the by-products from the processing of agricultural produce (for example sugarcane bagasse produced during the production of sugar from sugar cane, or cereal husks produced during milling) are also considered. Finally, certain aspects of the environmental impact and sustainability of the utilization of agricultural residues and by-products are addressed.

Suggested Citation

  • Cardoen, Dennis & Joshi, Piyush & Diels, Ludo & Sarma, Priyangshu M. & Pant, Deepak, 2015. "Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 143-153.
  • Handle: RePEc:eee:recore:v:101:y:2015:i:c:p:143-153
    DOI: 10.1016/j.resconrec.2015.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915300239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravindranath, N. H. & Hall, D. O., 1995. "Biomass, Energy, and Environment: A Developing Country Perspective from India," OUP Catalogue, Oxford University Press, number 9780198564362.
    2. Milhau, Antoine & Fallot, Abigail, 2013. "Assessing the potentials of agricultural residues for energy: What the CDM experience of India tells us about their availability," Energy Policy, Elsevier, vol. 58(C), pages 391-402.
    3. World Bank, 2005. "India : Road Transport Service Efficiency Study," World Bank Publications - Reports 8356, The World Bank Group.
    4. Singh, S.P. & Asthana, R.K. & Singh, A.P., 2007. "Prospects of sugarcane milling waste utilization for hydrogen production in India," Energy Policy, Elsevier, vol. 35(8), pages 4164-4168, August.
    5. Basavaraja, H. & Mahajanashetti, S.B. & Udagatti, Naveen C., 2007. "Economic Analysis of Post-harvest Losses in Food Grains in India: A Case Study of Karnataka," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 20(1).
    6. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of bagasse cogeneration in India," Energy Policy, Elsevier, vol. 35(10), pages 4779-4798, October.
    7. Restuti, Dewi & Michaelowa, Axel, 2007. "The economic potential of bagasse cogeneration as CDM projects in Indonesia," Energy Policy, Elsevier, vol. 35(7), pages 3952-3966, July.
    8. Bhattacharya, S.C & Arul Joe, M & Kandhekar, Zahed & Abdul Salam, P & Shrestha, R.M, 1999. "Greenhouse-gas emission mitigation from the use of agricultural residues: the case of ricehusk," Energy, Elsevier, vol. 24(1), pages 43-59.
    9. N. Panwar & N. Rathore, 2009. "Potential of surplus biomass gasifier based power generation: A case study of an Indian state Rajasthan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 711-720, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M., Balaji & K., Arshinder, 2016. "Modeling the causes of food wastage in Indian perishable food supply chain," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 153-167.
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Das, Prantika & Gundimeda, Haripriya, 2021. "Economic Evaluation of Achieving Biofuel Mandate through Advanced Biofuels in Developing Country: Case of India," 2021 Conference, August 17-31, 2021, Virtual 315355, International Association of Agricultural Economists.
    5. Mondal, Bapin & Ghosh, Uttam & Rahman, Md Sadikur & Saha, Pritam & Sarkar, Susmita, 2022. "Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 111-135.
    6. Chamizo-Gonzalez, Julián & Cano-Montero, Elisa Isabel & Muñoz-Colomina, Clara Isabel, 2016. "Municipal Solid Waste Management services and its funding in Spain," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 65-72.
    7. Gundupalli, Marttin Paulraj & Bhattacharyya, Debraj, 2021. "Hydrothermal liquefaction of residues of Cocos nucifera (coir and pith) using subcritical water: Process optimization and product characterization," Energy, Elsevier, vol. 236(C).
    8. Chaboud, Géraldine, 2017. "Assessing food losses and waste with a methodological framework: Insights from a case study," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 188-197.
    9. Daniel Faibil & Martin Agyemang & Owusu Amponsah & Himanshu Gupta & Simonov Kusi-Sarpong, 2021. "Assessing drivers of post-harvest losses: tangible and intangible resources’ perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15785-15829, November.
    10. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cardoen, Dennis & Joshi, Piyush & Diels, Ludo & Sarma, Priyangshu M. & Pant, Deepak, 2015. "Agriculture biomass in India: Part 1. Estimation and characterization," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 39-48.
    2. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    3. Grisi, Edson F. & Yusta, Jose M. & Dufo-López, Rodolfo, 2012. "Opportunity costs for bioelectricity sales in Brazilian sucro-energetic industries," Applied Energy, Elsevier, vol. 92(C), pages 860-867.
    4. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    5. Halder, P.K. & Paul, N. & Beg, M.R.A., 2014. "Assessment of biomass energy resources and related technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 444-460.
    6. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    7. Alonso-Pippo, Walfrido & Luengo, Carlos A. & Koehlinger, John & Garzone, Pietro & Cornacchia, Giacinto, 2008. "Sugarcane energy use: The Cuban case," Energy Policy, Elsevier, vol. 36(6), pages 2163-2181, June.
    8. Banerjee, Rangan, 2006. "Comparison of options for distributed generation in India," Energy Policy, Elsevier, vol. 34(1), pages 101-111, January.
    9. Tripathi, Arun K & Iyer, P.V.R & Chandra Kandpal, Tara, 1999. "Financial analysis of biomass gasifier based water pumping in India," Energy, Elsevier, vol. 24(6), pages 511-517.
    10. Liu, Gang & Lucas, Mario & Shen, Lei, 2008. "Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1890-1908, September.
    11. Jingura, Raphael Muzondiwa & Musademba, Downmore & Kamusoko, Reckson, 2013. "A review of the state of biomass energy technologies in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 652-659.
    12. Silveira, Semida & Khatiwada, Dilip, 2010. "Ethanol production and fuel substitution in Nepal--Opportunity to promote sustainable development and climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1644-1652, August.
    13. Qu, Xue & Kojima, Daizo & Nishihara, Yukinaga & Wu, Laping & Ando, Mitsuyoshi, 2021. "A Study of Rice Harvest Losses in China:Do Mechanization and Farming Scale Matter?," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 23.
    14. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    15. Chauhan, Anurag & Saini, R.P., 2015. "Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 662-681.
    16. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    17. Xie, Huiming & Shen, Manhong & Wang, Rui, 2014. "Determinants of clean development mechanism activity: Evidence from China," Energy Policy, Elsevier, vol. 67(C), pages 797-806.
    18. Turgut Bayramoğlu & Sevda Yaprakli, 2016. "The Assessment of the Energy Potential of Biomass of Animal and Plant Origin in the Context of Local Development: The Case of Turkey," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 4(2), pages 107-116, November.
    19. Bożena Kordan & Mariusz Nietupski & Emilia Ludwiczak & Beata Gabryś & Robert Cabaj, 2023. "Selected Cultivar-Specific Parameters of Wheat Grain as Factors Influencing Intensity of Development of Grain Weevil Sitophilus granarius (L.)," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
    20. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:101:y:2015:i:c:p:143-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.