IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v28y2019icp398-411.html
   My bibliography  Save this article

Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach

Author

Listed:
  • Tiwari, Aviral Kumar
  • Aye, Goodness C.
  • Gupta, Rangan

Abstract

This paper investigates the multifractality and efficiency of stock markets in eight developed (Canada, France, Germany, Italy, Japan, Switzerland, UK and USA) and two emerging (India and South Africa) countries for which long span of data, covering over or nearly a century in each case, is available to avoid sample bias. We employ the Multifractal Detrended Fluctuation Analysis (MF-DFA) based on the generalized Hurst exponents to compare the relative efficiency between short- and long-run horizons and small and large fluctuations. Our findings show that the stock markets are multifractal and mostly long-term persistent. Most markets are more efficient in the long-term than in the short-term. The findings are robust to small and large fluctuations. Overall, although efficiency level varies over time in these markets, the markets are not weakly efficient in both short- and long-term. We draw the economic implications of these results.

Suggested Citation

  • Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan, 2019. "Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach," Finance Research Letters, Elsevier, vol. 28(C), pages 398-411.
  • Handle: RePEc:eee:finlet:v:28:y:2019:i:c:p:398-411
    DOI: 10.1016/j.frl.2018.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318302472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rizvi, Syed Aun R. & Arshad, Shaista, 2017. "Analysis of the efficiency–integration nexus of Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 296-308.
    2. Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
    3. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    4. Aye, Goodness C. & Gil-Alana, Luis A. & Gupta, Rangan & Wohar, Mark E., 2017. "The efficiency of the art market: Evidence from variance ratio tests, linear and nonlinear fractional integration approaches," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 283-294.
    5. Arshad, Shaista & Rizvi, Syed Aun R. & Ghani, Gairuzazmi Mat & Duasa, Jarita, 2016. "Investigating stock market efficiency: A look at OIC member countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 402-413.
    6. Stakić, Nikola & Jovancai, Ana & Kapor, Predrag, 2016. "The efficiency of the stock market in Serbia," Journal of Policy Modeling, Elsevier, vol. 38(1), pages 156-165.
    7. Vasilios Plakandaras & Rangan Gupta & Luis A. Gil-Alana & Mark E. Wohar, 2019. "Are BRICS exchange rates chaotic?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(13), pages 1104-1110, July.
    8. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    9. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
    10. Subrata Kumar Mitra & Manojit Chattopadhyay & Parikshit Charan & Jaslene Bawa, 2017. "Identifying periods of market inefficiency for return predictability," Applied Economics Letters, Taylor & Francis Journals, vol. 24(10), pages 668-671, June.
    11. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    12. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    13. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    14. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    15. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
    16. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    17. Goodness C. Aye & Tsang Yao Chang & Wen†Yi Chen & Rangan Gupta & Mark Wohar, 2018. "Testing the Efficiency of the Art Market Using Quantile†Based Unit Root Tests with Sharp and Smooth Breaks," Manchester School, University of Manchester, vol. 86(4), pages 488-511, July.
    18. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    19. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aviral Kumar Tiwari & Rangan Gupta & Juncal Cunado & Xin Sheng, 2020. "Testing the white noise hypothesis in high-frequency housing returns of the United States," Economics and Business Letters, Oviedo University Press, vol. 9(3), pages 178-188.
    2. Samuel T. Ogunjo, 2023. "The impact of the 2007–2008 global financial crisis on the multifractality of the Nigerian Stock Exchange," SN Business & Economics, Springer, vol. 3(1), pages 1-17, January.
    3. Plastun, Alex & Sibande, Xolani & Gupta, Rangan & Wohar, Mark E., 2019. "Rise and fall of calendar anomalies over a century," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 181-205.
    4. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    5. Plastun, Alex & Sibande, Xolani & Gupta, Rangan & Wohar, Mark E., 2020. "Price gap anomaly in the US stock market: The whole story," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. José A. Roldán-Casas & Mª B. García-Moreno García, 2022. "A procedure for testing the hypothesis of weak efficiency in financial markets: a Monte Carlo simulation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1289-1327, December.
    7. Tatijana Stosic & Ivana Tošić & Irida Lazić & Milica Tošić & Lazar Filipović & Vladimir Djurdjević & Borko Stosic, 2024. "Multifractal Analysis of Standardized Precipitation Evapotranspiration Index in Serbia in the Context of Climate Change," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    8. Adekoya, Oluwasegun B. & Asl, Mahdi Ghaemi & Oliyide, Johnson A. & Izadi, Parviz, 2023. "Multifractality and cross-correlation between the crude oil and the European and non-European stock markets during the Russia-Ukraine war," Resources Policy, Elsevier, vol. 80(C).
    9. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    10. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    11. Zhou, Wei & Gu, Ruitao & Lu, Shuai, 2020. "Penetrating the real performance of SSE STAR enterprises: A double-market investigation," Finance Research Letters, Elsevier, vol. 37(C).
    12. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2021. "Exchange rate regimes and price efficiency: Empirical examination of the impact of financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    13. Raza, Syed Ali & Shah, Nida & Suleman, Muhammed Tahir, 2024. "A multifractal detrended fluctuation analysis of Islamic and conventional financial markets efficiency during the COVID-19 pandemic," International Economics, Elsevier, vol. 177(C).
    14. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2023. "Price efficiency of the foreign exchange rates of BRICS countries: A comparative analysis," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    15. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    16. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    17. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).
    18. Tao Yin & Yiming Wang, 2021. "Market Efficiency and Nonlinear Analysis of Soybean Futures," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    19. Ghazani, Majid Mirzaee & Ebrahimi, Seyed Babak, 2019. "Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices," Finance Research Letters, Elsevier, vol. 30(C), pages 60-68.
    20. Umar, Zaghum & Yousaf, Imran & Aharon, David Y., 2021. "The relationship between yield curve components and equity sectorial indices: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    21. Amairi, Haifa & Zantour, Ahlem & Saadi, Samir, 2021. "Information dissemination and price discovery," Finance Research Letters, Elsevier, vol. 38(C).
    22. Shrestha, Keshab & Naysary, Babak & Philip, Sheena Sara Suresh, 2023. "Fintech market efficiency: A multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 54(C).
    23. Suchetana Sadhukhan & Poulomi Sadhukhan, 2022. "Sector-wise analysis of Indian stock market: Long and short-term risk and stability analysis," Papers 2210.09619, arXiv.org.
    24. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    25. Han, Chenyu & Wang, Yiming & Ning, Ye, 2019. "Comparative analysis of the multifractality and efficiency of exchange markets: Evidence from exchange rates dynamics of major world currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    2. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    3. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    5. Bouoiyour, Jamal & Selmi, Refk & Wohar, Mark E., 2018. "Are Islamic stock markets efficient? A multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 26(C), pages 100-105.
    6. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    7. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    8. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2018. "Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 167-180.
    9. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    10. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    11. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    12. Raza, Syed Ali & Shah, Nida & Suleman, Muhammed Tahir, 2024. "A multifractal detrended fluctuation analysis of Islamic and conventional financial markets efficiency during the COVID-19 pandemic," International Economics, Elsevier, vol. 177(C).
    13. Chenyu Han & Yiming Wang & Yingying Xu, 2019. "Efficiency and Multifractality Analysis of the Chinese Stock Market: Evidence from Stock Indices before and after the 2015 Stock Market Crash," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    14. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    15. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
    16. Muhammad Usman Khurram & Kashif Hamid & Rana Shahid Imdad Akash, 2019. "Market Efficiency, Financial Integration, And Shock Transmission (Empirical Evidence From D-8 Economies)," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 5(4).
    17. Aviral Kumar Tiwari & Rangan Gupta & Juncal Cunado & Xin Sheng, 2020. "Testing the white noise hypothesis in high-frequency housing returns of the United States," Economics and Business Letters, Oviedo University Press, vol. 9(3), pages 178-188.
    18. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    19. Oluwasegun B. Adekoya, 2021. "Persistence and efficiency of OECD stock markets: linear and nonlinear fractional integration approaches," Empirical Economics, Springer, vol. 61(3), pages 1415-1433, September.
    20. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.

    More about this item

    Keywords

    Stock market; Efficiency; Short-term; Long-term; Multifractal detrended fluctuation analysis; Hurst exponent;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:28:y:2019:i:c:p:398-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.