IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v213y2019icp150-160.html
   My bibliography  Save this article

Modeling and solving a sugarcane harvest front scheduling problem

Author

Listed:
  • Junqueira, Rogerio de Ávila Ribeiro
  • Morabito, Reinaldo

Abstract

Sugarcane harvest front scheduling is a complex process that affects the main activities of sugarmill supply logistics and it should simultaneously consider the available harvest and transport capacities, which are sometimes neglected. This paper models this scheduling problem, exploring an analogy to the well-known general lotsizing and scheduling problem with parallel production lines, and presents a heuristic method to solve it, involving an aggregation process, a constructive MIP heuristic based on relax-and-fix and an improving MIP heuristic based on fix-and-optimize. This optimization approach is applied to solve a large-sized real problem instance of a Brazilian mill whole season. To validate the approach, a validation process of the literature is applied by consulting a selected group of Brazilian harvest planning specialists. The results highlight the potential of the approach and how it can change the current harvest planning practices, enabling plans that consider the balance of harvest and transport capacities without using sectorization.

Suggested Citation

  • Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
  • Handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:150-160
    DOI: 10.1016/j.ijpe.2019.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319300957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oral, Muhittin & Kettani, Ossama, 1993. "The facets of the modeling and validation process in operations research," European Journal of Operational Research, Elsevier, vol. 66(2), pages 216-234, April.
    2. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    3. Sartori, Maria Márcia Pereira & Florentino, Helenice de Oliveira & Basta, Cesar & Leão, Alcides Lopes, 2001. "Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy," Energy, Elsevier, vol. 26(11), pages 1031-1040.
    4. A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
    5. Helenice de Oliveira Florentino & Chandra Irawan & Angelo Filho Aliano & Dylan F. Jones & Daniela Renata Cantane & Jonis Jecks Nervis, 2018. "A multiple objective methodology for sugarcane harvest management with varying maturation periods," Annals of Operations Research, Springer, vol. 267(1), pages 153-177, August.
    6. Higgins, Andrew & Antony, George & Sandell, Gary & Davies, Ian & Prestwidge, Di & Andrew, Bill, 2004. "A framework for integrating a complex harvesting and transport system for sugar production," Agricultural Systems, Elsevier, vol. 82(2), pages 99-115, November.
    7. Grunow, M. & Gunther, H.-O. & Westinner, R., 2007. "Supply optimization for the production of raw sugar," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 224-239, October.
    8. da Silva, Aneirson Francisco & Marins, Fernando Augusto Silva, 2014. "A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill," Energy Economics, Elsevier, vol. 45(C), pages 196-204.
    9. Higgins, Andrew J. & Muchow, Russell C., 2003. "Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry," Agricultural Systems, Elsevier, vol. 76(2), pages 623-638, May.
    10. Ferreira, Deisemara & Morabito, Reinaldo & Rangel, Socorro, 2009. "Solution approaches for the soft drink integrated production lot sizing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 697-706, July.
    11. Meyr, H., 2002. "Simultaneous Lotsizing and Scheduling on Parallel Machines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36065, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. M H Hahn & R V Ribeiro, 1999. "Heuristic guided simulator for the operational planning of the transport of sugar cane," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 451-459, May.
    13. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.
    14. Andrew J. Higgins, 2002. "Australian Sugar Mills Optimize Harvester Rosters to Improve Production," Interfaces, INFORMS, vol. 32(3), pages 15-25, June.
    15. Tilanus, C. B., 1985. "Failures and successes of quantitative methods in management," European Journal of Operational Research, Elsevier, vol. 19(2), pages 170-175, February.
    16. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    17. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    18. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    19. Meyr, Herbert, 2002. "Simultaneous lotsizing and scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 139(2), pages 277-292, June.
    20. Lluís M Plà & Daniel L Sandars & Andrew J Higgins, 2014. "A perspective on operational research prospects for agriculture," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1078-1089, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    2. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    3. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    4. Absi, Nabil & van den Heuvel, Wilco, 2019. "Worst case analysis of Relax and Fix heuristics for lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 279(2), pages 449-458.
    5. Aliano Filho, Angelo & A. Oliveira, Washington & Melo, Teresa, 2023. "Multi-objective optimization for integrated sugarcane cultivation and harvesting planning," European Journal of Operational Research, Elsevier, vol. 309(1), pages 330-344.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    2. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    3. Helenice de O. Florentino & Dylan F. Jones & Chandra Ade Irawan & Djamila Ouelhadj & Banafesh Khosravi & Daniela R. Cantane, 2022. "An optimization model for combined selecting, planting and harvesting sugarcane varieties," Annals of Operations Research, Springer, vol. 314(2), pages 451-469, July.
    4. Bocca, Felipe Ferreira & Rodrigues, Luiz Henrique Antunes & Arraes, Nilson Antonio Modesto, 2015. "When do I want to know and why? Different demands on sugarcane yield predictions," Agricultural Systems, Elsevier, vol. 135(C), pages 48-56.
    5. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    6. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    7. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    8. Camargo, Victor C.B. & Toledo, Franklina M.B. & Almada-Lobo, Bernardo, 2014. "HOPS – Hamming-Oriented Partition Search for production planning in the spinning industry," European Journal of Operational Research, Elsevier, vol. 234(1), pages 266-277.
    9. Carvalho, Desiree M. & Nascimento, Mariá C.V., 2022. "Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup," European Journal of Operational Research, Elsevier, vol. 296(1), pages 158-173.
    10. Alyne Toscano & Deisemara Ferreira & Reinaldo Morabito, 2019. "A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 142-173, March.
    11. Martin Wörbelauer & Herbert Meyr & Bernardo Almada-Lobo, 2019. "Simultaneous lotsizing and scheduling considering secondary resources: a general model, literature review and classification," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 1-43, March.
    12. Aliano Filho, Angelo & A. Oliveira, Washington & Melo, Teresa, 2023. "Multi-objective optimization for integrated sugarcane cultivation and harvesting planning," European Journal of Operational Research, Elsevier, vol. 309(1), pages 330-344.
    13. Camila de Lima & Antonio Roberto Balbo & Thiago Pedro Donadon Homem & Helenice de Oliveira Florentino Silva, 2017. "A hybrid approach combining interior-point and branch-and-bound methods applied to the problem of sugar cane waste," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 147-164, February.
    14. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    15. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    16. Guimarães, Luis & Klabjan, Diego & Almada-Lobo, Bernardo, 2013. "Pricing, relaxing and fixing under lot sizing and scheduling," European Journal of Operational Research, Elsevier, vol. 230(2), pages 399-411.
    17. K. A. G. Araujo & E. G. Birgin & M. S. Kawamura & D. P. Ronconi, 2023. "Relax-and-Fix Heuristics Applied to a Real-World Lot Sizing and Scheduling Problem in the Personal Care Consumer Goods Industry," SN Operations Research Forum, Springer, vol. 4(2), pages 1-30, June.
    18. Esteban López-Milán & Lluis Plà-Aragonés, 2014. "A decision support system to manage the supply chain of sugar cane," Annals of Operations Research, Springer, vol. 219(1), pages 285-297, August.
    19. Kamal Lamsal & Philip C. Jones & Barrett W. Thomas, 2017. "Sugarcane Harvest Logistics in Brazil," Transportation Science, INFORMS, vol. 51(2), pages 771-789, May.
    20. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:150-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.