IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v179y2016icp35-43.html
   My bibliography  Save this article

Integration of stochastic approaches in the life cycle cost analysis of sewer pipe applications

Author

Listed:
  • Jin, Yongliang

Abstract

The objective of this paper is to integrate stochastic approaches in the life cycle cost analysis of sewer pipes. It is generally accepted that costs are of the greatest interest to the decision maker. The selection procedure primarily depends on the material availability as well as empirical information. Afterward costs in the maintenance phase lack consideration, which is mainly constrained by data availability and analysis techniques. This study focuses on the rigid pipe and evaluates the comparable application of reinforced concrete pipe (RCP), non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP) in sewer systems. The life cycle cost analysis is performed throughout the material manufacturing, construction and maintenance phases. Particularly, the Markov chain model is used to predict systems' conditions that are used as a guidance for management in the maintenance phase. Under a given strategy, the cost estimate is extended to the steady state, providing a new cost comparison perspective. In addition, methods to evaluate the model uncertainty are also presented. Applying the bootstrapping approach, the analysis reveals that the Markov chains model demonstrates decent robustness. In the case study of a 24-in. pipe application, results show that NRCP demands the least initial building cost, while RCP is more cost effective considering longer service life time. Cost comparison and specific examples are also presented to demonstrate practical applications. This integrated approach allows decision-makers and stakeholders to understand and compare economic costs during alternative selections in practice. The methodology developed may also be applied in the life cycle analysis of other critical infrastructure systems.

Suggested Citation

  • Jin, Yongliang, 2016. "Integration of stochastic approaches in the life cycle cost analysis of sewer pipe applications," International Journal of Production Economics, Elsevier, vol. 179(C), pages 35-43.
  • Handle: RePEc:eee:proeco:v:179:y:2016:i:c:p:35-43
    DOI: 10.1016/j.ijpe.2016.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316300834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    2. García Márquez, Fausto Pedro & Lewis, Richard W. & Tobias, Andrew M. & Roberts, Clive, 2008. "Life cycle costs for railway condition monitoring," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1175-1187, November.
    3. Hasan, Afif, 1999. "Optimizing insulation thickness for buildings using life cycle cost," Applied Energy, Elsevier, vol. 63(2), pages 115-124, June.
    4. Yongliang Jin & Amlan Mukherjee, 2014. "Markov chain applications in modelling facility condition deterioration," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 10(2), pages 93-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Švajlenka & Mária Kozlovská, 2018. "Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    2. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    3. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    6. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    7. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    8. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    9. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    10. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    11. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    13. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2006. "Life-cycle cost analysis for constant-air-volume and variable-air-volume air-conditioning systems," Applied Energy, Elsevier, vol. 83(6), pages 606-627, June.
    14. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    15. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    16. Ristimäki, Miro & Säynäjoki, Antti & Heinonen, Jukka & Junnila, Seppo, 2013. "Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design," Energy, Elsevier, vol. 63(C), pages 168-179.
    17. Xuto, Praj & Bansal, Prateek & Anderson, Richard J. & Graham, Daniel J. & Hörcher, Daniel & Barron, Alexander, 2023. "Examining the impacts of capital investment in London’s Underground: A long-term analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    18. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2023. "A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction," Sustainability, MDPI, vol. 15(4), pages 1-36, February.
    19. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    20. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:179:y:2016:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.