IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v10y2014i2p93-112.html
   My bibliography  Save this article

Markov chain applications in modelling facility condition deterioration

Author

Listed:
  • Yongliang Jin
  • Amlan Mukherjee

Abstract

Condition states of civil infrastructure such as pavements and bridges are usually indexed on discrete scales. Historical condition data is modelled using Markov chain to estimate transition probabilities from one condition state to another, the rate of change and the time spent in any given state. The usefulness of such models is a function of the completeness of the available records and underlying assumptions of homogeneity. However, complete sets of condition data are not always easily available. In addition, the transition probabilities between states are assumed to be homogeneous, even though they tend not to be. Therefore, the objective of this study is two-fold: First, to maximise the usage of limited available data in estimating transition probabilities between condition states; and second to assess the sensitivity of model predictions to variations in transition probabilities between condition states. The paper presents a novel method to estimate transition probabilities based on the simulation of long term behaviour of a Markov chain model. Next, building on existing research, a Monte Carlo simulation of a non-homogeneous Markov chain model is used to explicitly consider heterogeneity in transition probabilities.

Suggested Citation

  • Yongliang Jin & Amlan Mukherjee, 2014. "Markov chain applications in modelling facility condition deterioration," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 10(2), pages 93-112.
  • Handle: RePEc:ids:ijcist:v:10:y:2014:i:2:p:93-112
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=62965
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Yongliang, 2016. "Integration of stochastic approaches in the life cycle cost analysis of sewer pipe applications," International Journal of Production Economics, Elsevier, vol. 179(C), pages 35-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:10:y:2014:i:2:p:93-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.