IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v158y2014icp171-178.html
   My bibliography  Save this article

A two-stage flexible flow shop problem with unit-execution-time jobs and batching

Author

Listed:
  • Gerstl, Enrique
  • Mosheiov, Gur

Abstract

We study a batch-scheduling problem of unit-time jobs on a two-stage flexible flowshop. The objective functions are minimum makespan and minimum flowtime. Unlike previously studied models: (i) a general number of machines in both stages of the flowshop is allowed, and (ii) there is no restriction on the number of batches to be processed on each machine. Efficient exact dynamic programming algorithms are introduced. Extensions to the case of machine-dependent setup times are studied as well. All the proposed algorithms run in polynomial time in the number of jobs.

Suggested Citation

  • Gerstl, Enrique & Mosheiov, Gur, 2014. "A two-stage flexible flow shop problem with unit-execution-time jobs and batching," International Journal of Production Economics, Elsevier, vol. 158(C), pages 171-178.
  • Handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:171-178
    DOI: 10.1016/j.ijpe.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731400262X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerstl, Enrique & Mosheiov, Gur, 2013. "A two-stage flow shop batch-scheduling problem with the option of using Not-All-Machines," International Journal of Production Economics, Elsevier, vol. 146(1), pages 161-166.
    2. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    3. Hamilton Emmons & George Vairaktarakis, 2013. "Flexible Flow Shops," International Series in Operations Research & Management Science, in: Flow Shop Scheduling, edition 127, chapter 0, pages 247-268, Springer.
    4. Li, Zhan-tao & Chen, Qing-xin & Mao, Ning & Wang, Xiaoming & Liu, Jianjun, 2013. "Scheduling rules for two-stage flexible flow shop scheduling problem subject to tail group constraint," International Journal of Production Economics, Elsevier, vol. 146(2), pages 667-678.
    5. Byung-Cheon Choi & Kangbok Lee, 2013. "Two-stage proportionate flexible flow shop to minimize the makespan," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 123-134, January.
    6. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gur Mosheiov & Daniel Oron, 2023. "A note on batch scheduling on a two-machine flowshop with machine-dependent processing times," 4OR, Springer, vol. 21(3), pages 457-469, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anzhen Peng & Longcheng Liu & Weifeng Lin, 2021. "Improved approximation algorithms for two-stage flexible flow shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 28-42, January.
    2. Minghui Zhang & Yan Lan & Xin Han, 2020. "Approximation algorithms for two-stage flexible flow shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 1-14, January.
    3. Djellab, Housni & Djellab, Khaled, 2002. "Preemptive Hybrid Flowshop Scheduling problem of interval orders," European Journal of Operational Research, Elsevier, vol. 137(1), pages 37-49, February.
    4. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    5. Figielska, Ewa, 2014. "A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 433-444.
    6. Kamran Kianfar & Arezoo Atighehchian, 2023. "A hybrid heuristic approach to master surgery scheduling with downstream resource constraints and dividable operating room blocks," Annals of Operations Research, Springer, vol. 328(1), pages 727-754, September.
    7. Niu, Qun & Zhou, Taijin & Fei, Minrui & Wang, Bing, 2012. "An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 1-25.
    8. Mohamed Haouari & Lotfi Hidri & Anis Gharbi, 2006. "Optimal Scheduling of a Two-stage Hybrid Flow Shop," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 107-124, August.
    9. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    10. Negenman, Ebbe G., 2001. "Local search algorithms for the multiprocessor flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 147-158, January.
    11. Moursli, O. & Pochet, Y., 2000. "A branch-and-bound algorithm for the hybrid flowshop," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 113-125, March.
    12. Li, Zhan-tao & Chen, Qing-xin & Mao, Ning & Wang, Xiaoming & Liu, Jianjun, 2013. "Scheduling rules for two-stage flexible flow shop scheduling problem subject to tail group constraint," International Journal of Production Economics, Elsevier, vol. 146(2), pages 667-678.
    13. George J. Kyparisis & Christos Koulamas, 2002. "Assembly-Line Scheduling with Concurrent Operations and Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 68-80, February.
    14. Diaz, Juan Esteban & Handl, Julia & Xu, Dong-Ling, 2018. "Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system," European Journal of Operational Research, Elsevier, vol. 266(3), pages 976-989.
    15. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    16. Kyparisis, George J. & Koulamas, Christos, 2006. "Flexible flow shop scheduling with uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 168(3), pages 985-997, February.
    17. Christos Koulamas & George J. Kyparisis, 2000. "Asymptotically optimal linear time algorithms for two‐stage and three‐stage flexible flow shops," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 259-268, April.
    18. Zhang, Xiandong & van de Velde, Steef, 2012. "Approximation algorithms for the parallel flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(3), pages 544-552.
    19. Jianming Dong & Ruyan Jin & Jueliang Hu & Guohui Lin, 2019. "A fully polynomial time approximation scheme for scheduling on parallel identical two-stage openshops," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 668-684, February.
    20. F Sivrikaya şerifoğlu & G Ulusoy, 2004. "Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 504-512, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:171-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.