IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v146y2013i1p142-152.html
   My bibliography  Save this article

An improved approximation for the renewal function and its integral with an application in two-echelon inventory management

Author

Listed:
  • Parsa, Hossein
  • Jin, Mingzhou

Abstract

A simple but effective approximation is proposed to compute the renewal function, M(t), and its integral. The asymptotic approximation of the renewal function and its integral, which are widely used in decision makings involving a renewal process, may not perform well when t is not large enough. To overcome the inaccuracy of the asymptotic approximation, we propose a modified approximation that computes the renewal function and its integral based on the probability distribution function of inter-renewal time when the distribution function is known or based on its mean and standard deviation when the distribution function is unknown. The proposed approximation provides closed form expressions, which are important in decision makings, for the renewal function and its integral for the entire range of t rather than numerically computes them for given values of t. Extensive numerical experiments on commonly used distributions are conducted and demonstrate better performance of the proposed approximations compared to the asymptotic approximation. The new approximations are further applied to a case study of a two-echelon inventory system and result in better solutions compared to the reported results based on the asymptotic approximation.

Suggested Citation

  • Parsa, Hossein & Jin, Mingzhou, 2013. "An improved approximation for the renewal function and its integral with an application in two-echelon inventory management," International Journal of Production Economics, Elsevier, vol. 146(1), pages 142-152.
  • Handle: RePEc:eee:proeco:v:146:y:2013:i:1:p:142-152
    DOI: 10.1016/j.ijpe.2013.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313002867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gou, Qinglong & Liang, Liang & Huang, Zhimin & Xu, Chuanyong, 2008. "A joint inventory model for an open-loop reverse supply chain," International Journal of Production Economics, Elsevier, vol. 116(1), pages 28-42, November.
    2. S. Zacks, 2010. "The Availability and Hazard of a System Under a Cumulative Damage Process With Replacements," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 555-565, December.
    3. Jiang, R., 2010. "A simple approximation for the renewal function with an increasing failure rate," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 963-969.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altındağ, Ömer & Aydoğdu, Halil, 2021. "Estimation of renewal function under progressively censored data and its applications," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. R. Jiang, 2022. "Two approximations of renewal function for any arbitrary lifetime distribution," Annals of Operations Research, Springer, vol. 311(1), pages 151-165, April.
    3. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Jiang, 2022. "Two approximations of renewal function for any arbitrary lifetime distribution," Annals of Operations Research, Springer, vol. 311(1), pages 151-165, April.
    2. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Nasir, Mohammed Haneef Abdul & Genovese, Andrea & Acquaye, Adolf A. & Koh, S.C.L. & Yamoah, Fred, 2017. "Comparing linear and circular supply chains: A case study from the construction industry," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 443-457.
    4. Brezavšček Alenka, 2013. "A Simple Discrete Approximation for the Renewal Function," Business Systems Research, Sciendo, vol. 4(1), pages 65-75, March.
    5. Gómez Fernández, Juan F. & Márquez, Adolfo Crespo & López-Campos, Mónica A., 2016. "Customer-oriented risk assessment in network utilities," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 72-83.
    6. Stathis Chadjiconstantinidis, 2023. "Sequences of Improved Two-Sided Bounds for the Renewal Function and the Solutions of Renewal-Type Equations," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-31, June.
    7. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    8. Dobos, Imre & Gobsch, Barbara & Pakhomova, Nadezhda & Pishchulov, Grigory & Richter, Knut, 2011. "A vendor-purchaser economic lot size problem with remanufacturing and deposit," Discussion Papers 304, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    9. Raymond Houé Ngouna & Bernard Grabot, 2009. "Assessing the compliance of a product with an eco-label: from standards to constraints," Post-Print hal-00965906, HAL.
    10. Jonrinaldi, & Zhang, D.Z., 2013. "An integrated production and inventory model for a whole manufacturing supply chain involving reverse logistics with finite horizon period," Omega, Elsevier, vol. 41(3), pages 598-620.
    11. Tosarkani, Babak Mohamadpour & Amin, Saman Hassanzadeh & Zolfagharinia, Hossein, 2020. "A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network," International Journal of Production Economics, Elsevier, vol. 224(C).
    12. Hariga, Moncer & As’ad, Rami & Khan, Zeinab, 2017. "Manufacturing-remanufacturing policies for a centralized two stage supply chain under consignment stock partnership," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 362-374.
    13. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    15. Mokhtari, Hadi, 2018. "Economic order quantity for joint complementary and substitutable items," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 34-47.
    16. Houe, Raymond & Grabot, Bernard, 2009. "Assessing the compliance of a product with an eco-label: From standards to constraints," International Journal of Production Economics, Elsevier, vol. 121(1), pages 21-38, September.
    17. Gunasekaran, Angappa & Spalanzani, Alain, 2012. "Sustainability of manufacturing and services: Investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 35-47.
    18. Godichaud, Matthieu & Amodeo, Lionel, 2018. "Economic order quantity for multistage disassembly systems," International Journal of Production Economics, Elsevier, vol. 199(C), pages 16-25.
    19. Wu, Shaomin, 2014. "Warranty return policies for products with unknown claim causes and their optimisation," International Journal of Production Economics, Elsevier, vol. 156(C), pages 52-61.
    20. Komeil Zamanloo & Saeed Mansour, 2024. "A multi-objective mathematical model for three-dimensional concurrent engineering with a sustainable approach: a case study in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25945-25993, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:146:y:2013:i:1:p:142-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.