IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v648y2024ics0378437124004382.html
   My bibliography  Save this article

Social clustering reinforces external influence on the majority opinion model

Author

Listed:
  • Van Santen, Niels
  • Ryckebusch, Jan
  • Rocha, Luis E.C.

Abstract

Public opinion is subject to peer interaction via social networks and external pressure from the media, advertising, and other actors. In this paper, we study the interaction between external and peer influence on the stochastic opinion dynamics of a majority vote model. We introduce a model where agents update their opinions based on the combined influence of their local neighbourhood (peers) and an external actor in the transition rates. In the first model, the external influence is only felt by agents non-aligned with the external actor (“push strategy”). In the second model, agents are affected by external influence, independently of their opinions (“nudging strategy”). In both cases, the external influence increases the possible macroscopic outcomes. These outcomes are determined by the chosen influence strategy. We also find that the social network structure affects the opinion dynamics, with social clustering positively reinforcing the external influence whereas degree heterogeneity weakens the external forces. These findings are relevant to businesses and policy making, helping to understand how groups of individuals collectively react to external actors.

Suggested Citation

  • Van Santen, Niels & Ryckebusch, Jan & Rocha, Luis E.C., 2024. "Social clustering reinforces external influence on the majority opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
  • Handle: RePEc:eee:phsmap:v:648:y:2024:i:c:s0378437124004382
    DOI: 10.1016/j.physa.2024.129929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004382
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Botte, Nina & Ryckebusch, Jan & Rocha, Luis E.C., 2022. "Clustering and stubbornness regulate the formation of echo chambers in personalised opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Haoxiang Xia & Huili Wang & Zhaoguo Xuan, 2011. "Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 2(4), pages 72-91, October.
    3. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    4. Stauffer, Dietrich, 2004. "Introduction to statistical physics outside physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 1-5.
    5. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    6. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    7. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    8. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    9. Jimit R. Majmudar & Stephen M. Krone & Bert O. Baumgaertner & Rebecca C. Tyson, 2020. "Voter models and external influence," The Journal of Mathematical Sociology, Taylor & Francis Journals, vol. 44(1), pages 1-11, January.
    10. Floriana Gargiulo & Yerali Gandica, 2017. "The Role of Homophily in the Emergence of Opinion Controversies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(3), pages 1-8.
    11. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    12. Douglas Guilbeault & Damon Centola, 2021. "Topological measures for identifying and predicting the spread of complex contagions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Crokidakis, Nuno, 2012. "Effects of mass media on opinion spreading in the Sznajd sociophysics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1729-1734.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    2. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Jean Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Post-Print hal-04145594, HAL.
    4. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    5. Jean-Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Papers 2306.16165, arXiv.org.
    6. Maria Minniti & William Bygrave, 2001. "A Dynamic Model of Entrepreneurial Learning," Entrepreneurship Theory and Practice, , vol. 25(3), pages 5-16, April.
    7. Luis Alfonso Dau & Aya S. Chacar & Marjorie A. Lyles & Jiatao Li, 2022. "Informal institutions and international business: Toward an integrative research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(6), pages 985-1010, August.
    8. Giuseppe Pernagallo & Benedetto Torrisi, 2020. "A theory of information overload applied to perfectly efficient financial markets," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
    9. Sergeeva, Anastasia & Bhardwaj, Akhil & Dimov, Dimo, 2021. "In the heat of the game: Analogical abduction in a pragmatist account of entrepreneurial reasoning," Journal of Business Venturing, Elsevier, vol. 36(6).
    10. Alan Kirman & François Laisney & Paul Pezanis-Christou, 2023. "Relaxing the symmetry assumption in participation games: a specification test for cluster-heterogeneity," Experimental Economics, Springer;Economic Science Association, vol. 26(4), pages 850-878, September.
    11. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    12. Gian Italo Bischi & Ugo Merlone, 2017. "Evolutionary minority games with memory," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 859-875, November.
    13. Salle, Isabelle & Yildizoglu, Murat & Zumpe, Martin & Sénégas, Marc-Alexandre, 2017. "Coordination through social learning in a general equilibrium model," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 64-82.
    14. Benjamin Patrick Evans & Mikhail Prokopenko, 2021. "Bounded rationality for relaxing best response and mutual consistency: The Quantal Hierarchy model of decision-making," Papers 2106.15844, arXiv.org, revised Mar 2023.
    15. Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
    16. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    17. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    18. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    19. Claudius Graebner & Jakob Kapeller, 2015. "The Micro-Macro Link in Heterodox Economics," ICAE Working Papers 37, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    20. Guzmán-Vargas, L. & Hernández-Pérez, R., 2006. "Small-world topology and memory effects on decision time in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(2), pages 326-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:648:y:2024:i:c:s0378437124004382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.