IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003072.html
   My bibliography  Save this article

A two-stage Duffing equation-based oscillator and stochastic resonance for mechanical fault diagnosis

Author

Listed:
  • Xiang, Jiawei
  • Guo, Jianchun
  • Li, Xiaoqi

Abstract

Incipient fault-induced weak impulses will not be detected easily using the existing fault extraction methods. Stochastic resonance can flexibly use noises to enhance the signal-to-noise ratio, but it lacks the ability of anti-interference to obtain robustness and reliability fault detection performance. A two-stage method is presented to diagnose faults in mechanical components. The first is to judge the fault existence according to the characteristics of the phase space trajectory diagram of the Duffing oscillator. The second is to employ stochastic resonance method based on the Duffing equation to improve the signal-to-noise ratio of the raw signal, in which the two barrier parameters in the Duffing equation-based bistable system are carefully selected using the artificial bee colony algorithm. In the present two-stage method, the existence of faults and further the fault types in mechanical components are stepwise detected to make full usages of the advantages of Duffing oscillator and Duffing equation-based stochastic resonance method. Numerical simulations and two experimental cases verify the performance of the proposed method for mechanical components fault detection in a strong noise environment.

Suggested Citation

  • Xiang, Jiawei & Guo, Jianchun & Li, Xiaoqi, 2024. "A two-stage Duffing equation-based oscillator and stochastic resonance for mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003072
    DOI: 10.1016/j.chaos.2024.114755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Avishek Chowdhury & Marcel G. Clerc & Sylvain Barbay & Isabelle Robert-Philip & Remy Braive, 2020. "Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Guo, Jianchun & Si, Zetian & Liu, Yi & Li, Jiahao & Li, Yanting & Xiang, Jiawei, 2022. "Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jinjie & Zhao, Feng & Li, Yang & Liu, Xianbin, 2024. "Rotational stochastic resonance in multistable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    2. Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Wang, Hui & Zheng, Junkang & Xiang, Jiawei, 2023. "Online bearing fault diagnosis using numerical simulation models and machine learning classifications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. He, Lifang & Xiong, Qing & Bi, Lujie, 2024. "Optimizing DSFH communication system performance via multi-feedback unsaturated tri-stable stochastic resonance for enhancement of periodic signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    6. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.