IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v622y2023ics0378437123003540.html
   My bibliography  Save this article

Modeling and stabilization control for heterogeneous traffic flow model considering cyberattacks

Author

Listed:
  • Ge, Hongxia
  • Lin, Lizhen
  • Cheng, Rongjun

Abstract

With the popularity of computer internet technology in transportation, connected automated vehicles (CAVs) maintain the traffic flow stability by sharing real-time driving information. However, the open-access environment makes CAVs vulnerable to attacks. Hackers transmit erroneous driving information to drivers, which lead to changes in their driving behavior and cause potential traffic hazards. Based on the summary of existing essays, this paper classifies cyberattacks into three types: false messages, repeat/delay and collusion attack. In addition, mixed flow is a common form of traffic. This paper proposed an extended heterogeneous traffic flow model considering cyberattacks, judgments the stability of the CAVs platoon and designs the controller for stability control. Subsequently, the stability of the new model is analyzed theoretically, and the stability condition of the new model is obtained. The simulation results show that the when CAVs platoon attacked by uncertain types and locations, it can still maintain the stability of the team and reduce the time for the team to return to equilibrium.

Suggested Citation

  • Ge, Hongxia & Lin, Lizhen & Cheng, Rongjun, 2023. "Modeling and stabilization control for heterogeneous traffic flow model considering cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
  • Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003540
    DOI: 10.1016/j.physa.2023.128799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003540
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lan & Zhu, Liling & Yang, Da, 2016. "Modeling and simulation of the car-truck heterogeneous traffic flow based on a nonlinear car-following model," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 706-717.
    2. Yang, Da & Jin, Peter (Jing) & Pu, Yun & Ran, Bin, 2014. "Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 371-383.
    3. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    4. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Jin, Yanfei & Xu, Meng, 2016. "Stability analysis in a car-following model with reaction-time delay and delayed feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 107-116.
    6. Cheng, Rongjun & Lyu, Hao & Zheng, Yaxing & Ge, Hongxia, 2022. "Modeling and stability analysis of cyberattack effects on heterogeneous intelligent traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Yu, Shaowei & Zhao, Xiangmo & Xu, Zhigang & Shi, Zhongke, 2016. "An improved car-following model considering the immediately ahead car’s velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 446-455.
    8. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lou, Haoli & Lyu, Hao & Cheng, Rongjun, 2024. "A time-varying driving style oriented model predictive control for smoothing mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Cheng, Rongjun & Ji, Qun & Zheng, Yuchen & Ge, Hongxia, 2023. "Analysis of the impact of cyberattacks on the lane changing behavior of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    3. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lin & Pei, Yulong & He, Qingling, 2023. "A car following model in the context of heterogeneous traffic flow involving multilane following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    3. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    4. Yunze Wang & Ranran Xu & Ke Zhang, 2022. "A Car-Following Model for Mixed Traffic Flows in Intelligent Connected Vehicle Environment Considering Driver Response Characteristics," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    5. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    6. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    7. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Yang, Yichen & Li, Zuxing & Li, Yabin & Cao, Tianyu & Li, Zhipeng, 2023. "Stability enhancement for traffic flow via self–stabilizing control strategy in the presence of packet loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    10. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    11. Zhang, Geng & Yin, Le & Pan, Dong-Bo & Zhang, Yu & Cui, Bo-Yuan & Jiang, Shan, 2020. "Research on multiple vehicles’ continuous self-delayed velocities on traffic flow with vehicle-to-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    13. Hua, Xuedong & Yu, Weijie & Wang, Wei & Zhao, De, 2023. "Impact of multi-class stochastic cyberattacks on vehicle dynamics and rear-end collision risks for heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    14. Lou, Haoli & Lyu, Hao & Cheng, Rongjun, 2024. "A time-varying driving style oriented model predictive control for smoothing mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    15. Cheng, Rongjun & Ji, Qun & Zheng, Yuchen & Ge, Hongxia, 2023. "Analysis of the impact of cyberattacks on the lane changing behavior of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Montanino, Marcello & Monteil, Julien & Punzo, Vincenzo, 2021. "From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 136-154.
    17. Cui, Bo-Yuan & Zhang, Geng & Ma, Qing-Lu, 2021. "A stable velocity control strategy for a discrete-time car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Tan, Jin-hua, 2019. "Impact of risk illusions on traffic flow in fog weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 216-222.
    19. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    20. Yongjiang-Wang, & Han-Song, & Rongjun-Cheng,, 2019. "TDGL and mKdV equations for an extended car-following model with the consideration of driver’s memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 440-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.