IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics0378437123002066.html
   My bibliography  Save this article

Multifractal descriptors ergodically characterize non-ergodic multiplicative cascade processes

Author

Listed:
  • Kelty-Stephen, Damian G.
  • Mangalam, Madhur

Abstract

Biological and psychological processes routinely break ergodicity, meaning they fail to have stable means (Mean) and independent variation over time that we might find in additive white Gaussian noise (awGn). One possible reason for this failure of ergodicity is the failure of biological and psychological processes to exhibit independence across time. Multifractal evidence has long suggested that biological and psychological processes show strong signatures of nonlinear interactions across scales. These cross-scale interactions sooner befit a cascade-dynamical process than awGn. The present work thus compares awGn to simulations of multiplicative binomial cascades, submitting both types of series and shuffled versions of each to the Thirumalai-Mountain method for estimating ergodicity breaking. Estimating ergodicity breaking for original awGn and cascade series allows us to examine the sources of ergodicity breaking across the sequence, e.g., in temporal correlations specifying nonlinear interactions across scales, and examining ergodicity breaking of the shuffled series allows us to assess the raw, sequence-independent contribution of distributional properties (e.g., the heavy tails of a cascade) without the original temporal sequence. Raw cascade fluctuations and the standard deviation (SD) and root mean square (RMS) series describing those raw fluctuations break ergodicity, but nonlinear, cascade-dynamical descriptors: multifractal spectrum width (Δα) and multifractal nonlinearity (tMF), maintain ergodicity. Interestingly, the fundamentally linear descriptor, fractal Hurst exponent (HfGn) shows moderate ergodicity breaking when describing the fundamentally nonlinear cascade processes, but the linear descriptor coefficient of variation (CV) controls for multiplicative relationships between SD and Mean and maintains ergodicity. We conclude that the ergodicity of statistical descriptors depends on how well they can portray nonlinearity (Δα and tMF) or at least multiplicativity (CV) of the underlying cascade processes.

Suggested Citation

  • Kelty-Stephen, Damian G. & Mangalam, Madhur, 2023. "Multifractal descriptors ergodically characterize non-ergodic multiplicative cascade processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002066
    DOI: 10.1016/j.physa.2023.128651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002066
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorka Muñoz-Gil & Giovanni Volpe & Miguel Angel Garcia-March & Erez Aghion & Aykut Argun & Chang Beom Hong & Tom Bland & Stefano Bo & J. Alberto Conejero & Nicolás Firbas & Òscar Garibo i Orts & Aless, 2021. "Objective comparison of methods to decode anomalous diffusion," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Amir AghaKouchak & Laurie S. Huning & Felicia Chiang & Mojtaba Sadegh & Farshid Vahedifard & Omid Mazdiyasni & Hamed Moftakhari & Iman Mallakpour, 2018. "How do natural hazards cascade to cause disasters?," Nature, Nature, vol. 561(7724), pages 458-460, September.
    3. Miguel Garcia-Castro & Lea Kremer & Christopher D. Reinkemeier & Christian Unkelbach & Carsten Strohmann & Slava Ziegler & Claude Ostermann & Kamal Kumar, 2015. "De novo branching cascades for structural and functional diversity in small molecules," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
    4. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2022. "Fractal and multifractal descriptors restore ergodicity broken by non-Gaussianity in time series," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Mangalam, Madhur & Carver, Nicole S. & Kelty-Stephen, Damian G., 2020. "Global broadcasting of local fractal fluctuations in a bodywide distributed system supports perception via effortful touch," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Kelty-Stephen, Damian G. & Furmanek, Mariusz P. & Mangalam, Madhur, 2021. "Multifractality distinguishes reactive from proactive cascades in postural control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelty-Stephen, Damian G. & Furmanek, Mariusz P. & Mangalam, Madhur, 2021. "Multifractality distinguishes reactive from proactive cascades in postural control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2022. "Fractal and multifractal descriptors restore ergodicity broken by non-Gaussianity in time series," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    5. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. L. Telesca & T. Matcharashvili & T. Chelidze & N. Zhukova & Z. Javakhishvili, 2015. "Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 117-125, May.
    7. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    8. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    9. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    10. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    11. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.
    12. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    13. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    14. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    15. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Lei Zhou, 2019. "The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    17. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    18. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    19. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    20. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.