IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v615y2023ics0378437123000845.html
   My bibliography  Save this article

Discriminating abilities of threshold-free evaluation metrics in link prediction

Author

Listed:
  • Zhou, Tao

Abstract

Link prediction is a paradigmatic and challenging problem in network science, which attempts to uncover missing links or predict future links, based on known topology. A fundamental but still unsolved issue is how to choose proper metrics to fairly evaluate prediction algorithms. The area under the receiver operating characteristic curve (AUC) and the balanced precision (BP) are the two most popular metrics in early studies, while their effectiveness is recently under debate. At the same time, the area under the precision–recall curve (AUPR) becomes increasingly popular, especially in biological studies. Based on a toy model with tunable noise and predictability, we propose a method to measure the discriminating ability of any given metric. We apply this method to the above three threshold-free metrics, showing that AUC and AUPR are remarkably more discriminating than BP, and AUC is slightly more discriminating than AUPR. The result suggests that it is better to simultaneously use AUC and AUPR in evaluating link prediction algorithms. At the same time, it warns us that the evaluation based only on BP may be unauthentic. This article provides a starting point towards a comprehensive picture about effectiveness of evaluation metrics for link prediction.

Suggested Citation

  • Zhou, Tao, 2023. "Discriminating abilities of threshold-free evaluation metrics in link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
  • Handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123000845
    DOI: 10.1016/j.physa.2023.128529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123000845
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    2. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    3. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    4. István A. Kovács & Katja Luck & Kerstin Spirohn & Yang Wang & Carl Pollis & Sadie Schlabach & Wenting Bian & Dae-Kyum Kim & Nishka Kishore & Tong Hao & Michael A. Calderwood & Marc Vidal & Albert-Lász, 2019. "Network-based prediction of protein interactions," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    6. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    7. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    8. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    9. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    6. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    7. Xu-Wen Wang & Lorenzo Madeddu & Kerstin Spirohn & Leonardo Martini & Adriano Fazzone & Luca Becchetti & Thomas P. Wytock & István A. Kovács & Olivér M. Balogh & Bettina Benczik & Mátyás Pétervári & Be, 2023. "Assessment of community efforts to advance network-based prediction of protein–protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    9. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    10. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    11. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    12. Jiao, Yang & Wu, Jianshe & Xiang, Peng & Wang, Fang, 2023. "Link prediction from fusion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    13. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    14. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Chen, Xing & Wu, Tao & Xian, Xingping & Wang, Chao & Yuan, Ye & Ming, Guannan, 2020. "Enhancing robustness of link prediction for noisy complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. Lingling Zhang & Jing Li & Qiuliu Zhang & Fan Meng & Weili Teng, 2019. "Domain Knowledge-Based Link Prediction in Customer-Product Bipartite Graph for Product Recommendation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 311-338, January.
    19. Mueller, Falko, 2023. "Link and edge weight prediction in air transport networks — An RNN approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    20. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123000845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.