IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s0378437122008196.html
   My bibliography  Save this article

Co-evolution of network structure and consumer inequality in a spatially explicit model of energetic resource acquisition

Author

Listed:
  • Davis, Natalie
  • Jarvis, Andrew
  • Polhill, J. Gareth

Abstract

Energetic resources in ecological and social–ecological systems are distributed through complex networks, which co-evolve with the system and consumers to move resources from points of origin to those of end use. Past research has focused on effects of spatiotemporal resource heterogeneity in ecosystems and society, or socioeconomic drivers of inequality, with less attention to interactions between resource network structure and population-level outcomes. Here, we develop a spatially explicit, stock-flow consistent agent-based model of generic consumers building and crossing links between resources, and we explore the co-evolution of the emergent network structure and inequality in consumers’ resource reserves across three distinct landscapes. We show that the consumer inequality initially decreased during network expansion, then increased rapidly as the network reached a more stable state. The spatial distribution of resources in each of the three landscapes constrained the structures that could emerge, and therefore the specific rates and timings of these dynamics. This work demonstrates the use of energetically consistent modelling to understand possible relationships among a spatially distributed set of resources, the network structure that connects them to a population, and inequality in that population. This can provide a theoretical underpinning informing further work to better understand causes of resource inequality and heterogeneity in observed systems.

Suggested Citation

  • Davis, Natalie & Jarvis, Andrew & Polhill, J. Gareth, 2022. "Co-evolution of network structure and consumer inequality in a spatially explicit model of energetic resource acquisition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008196
    DOI: 10.1016/j.physa.2022.128261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008196
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Matt L. & Ringelman, Kevin M. & Eadie, John M. & Schank, Jeffrey C., 2017. "Time to fly: A comparison of marginal value theorem approximations in an agent-based model of foraging waterfowl," Ecological Modelling, Elsevier, vol. 351(C), pages 77-86.
    2. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    3. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    4. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    5. Fichera, Alberto & Pluchino, Alessandro & Volpe, Rosaria, 2018. "A multi-layer agent-based model for the analysis of energy distribution networks in urban areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 710-725.
    6. Iris Lorscheid & Bernd-Oliver Heine & Matthias Meyer, 2012. "Opening the ‘black box’ of simulations: increased transparency and effective communication through the systematic design of experiments," Computational and Mathematical Organization Theory, Springer, vol. 18(1), pages 22-62, March.
    7. Michael A. Long & Lara Gonçalves & Paul B. Stretesky & Margaret Anne Defeyter, 2020. "Food Insecurity in Advanced Capitalist Nations: A Review," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    8. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    9. Little, L.R. & McDonald, A.D., 2007. "Simulations of agents in social networks harvesting a resource," Ecological Modelling, Elsevier, vol. 204(3), pages 379-386.
    10. Beltran, Roxanne S. & Testa, J. Ward & Burns, Jennifer M., 2017. "An agent-based bioenergetics model for predicting impacts of environmental change on a top marine predator, the Weddell seal," Ecological Modelling, Elsevier, vol. 351(C), pages 36-50.
    11. Amie Gaye, 2007. "Access to Energy and Human Development," Human Development Occasional Papers (1992-2007) HDOCPA-2007-25, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    12. Sun, Ye & Chen, Yu, 2018. "On the mechanism of phase transitions in a minimal agent-based macroeconomic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 613-624.
    13. Hannon, Bruce, 1994. "Sense of place: geographic discounting by people, animals and plants," Ecological Economics, Elsevier, vol. 10(2), pages 157-174, July.
    14. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    15. Yongfan Wang & Marc W. Cadotte & Yuxin Chen & Lauchlan H. Fraser & Yuhua Zhang & Fengmin Huang & Shan Luo & Nayun Shi & Michel Loreau, 2019. "Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    2. Ngo-Hoang, Dai-Long, 2019. "A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p," AgriXiv xutyz, Center for Open Science.
    3. Brewer, Paul & Ratan, Anmol, 2019. "Profitability, efficiency, and inequality in double auction markets with snipers," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 486-499.
    4. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    5. Luquini, Evandro & Montagna, Guido & Omar, Nizam, 2020. "Fusing non-conservative kinetic market models and evolutionary computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    7. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    8. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    9. Apetrei, Cristina I. & Strelkovskii, Nikita & Khabarov, Nikolay & Javalera Rincón, Valeria, 2024. "Improving the representation of smallholder farmers’ adaptive behaviour in agent-based models: Learning-by-doing and social learning," Ecological Modelling, Elsevier, vol. 489(C).
    10. Emanuele Borgonovo & Marco Pangallo & Jan Rivkin & Leonardo Rizzo & Nicolaj Siggelkow, 2022. "Sensitivity analysis of agent-based models: a new protocol," Computational and Mathematical Organization Theory, Springer, vol. 28(1), pages 52-94, March.
    11. Alan G. Isaac, 2019. "Exploring the Social-Architecture Model," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(4), pages 565-589, October.
    12. William Rand & Christian Stummer, 2021. "Agent‐based modeling of new product market diffusion: an overview of strengths and criticisms," Annals of Operations Research, Springer, vol. 305(1), pages 425-447, October.
    13. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    14. Ellis Scharfenaker, Markus P.A. Schneider, 2019. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Paper Series, Department of Economics, University of Utah 2019_08, University of Utah, Department of Economics.
    15. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    16. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    17. Eugenio Caverzasi & Antoine Godin, 2013. "Stock-flow Consistent Modeling through the Ages," Economics Working Paper Archive wp_745, Levy Economics Institute.
    18. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    19. Michael J. Radzicki, 2003. "Mr. Hamilton, Mr. Forrester, and a Foundation for Evolutionary Economics," Journal of Economic Issues, Taylor & Francis Journals, vol. 37(1), pages 133-173, March.
    20. Kazuya Yamamoto, 2015. "Mobilization, Flexibility of Identity, and Ethnic Cleavage," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.