IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v606y2022ics0378437122006963.html
   My bibliography  Save this article

Fairness-oriented train service design for urban rail transit cross-line operation

Author

Listed:
  • Sun, Lishan
  • Lu, Huabo
  • Xu, Yan
  • Kong, Dewen
  • Shao, Juan

Abstract

With the network operation in urban rail transit (URT), accessibility to the URT network increases markedly, leading to a growing transfer demand. As the URT system resource is equivalent to a bottleneck resource, it needs to be fairly allocated to transfer passengers (TP) and direct passengers (DP). Most existing studies focus on single line operation optimization but ignore the transfer demands of TPs. Cross-line operation (CO) has been verified as an efficient way to improve TP travel efficiency. This study focuses on the issue of passenger travel fairness with CO in the URT system. The concept of passenger effective travel time (ET) and ineffective travel time (IET) are proposed first. Based on the concept of α-fairness, the fairness of different classes of passengers was calculated through IET and ET. A mathematical model with decision variables of the turn-back station for CO and train frequency was constructed by analyzing the travel characteristics of passengers in two types of intersecting URT lines (“Y/T”-type and “X”-type) to minimize the passenger IET cost, fairness, and operation cost. Finally, the Changping Line and Line 8 in the Beijing URT system were considered as examples to verify the effectiveness of the proposed approach. The results indicate that from an overall perspective, CO can improve passenger travel fairness without increasing the IET cost for all passengers. Furthermore, considering the fairness of passenger travel may increase the operation costs. Study results contribute to a more fair URT system.

Suggested Citation

  • Sun, Lishan & Lu, Huabo & Xu, Yan & Kong, Dewen & Shao, Juan, 2022. "Fairness-oriented train service design for urban rail transit cross-line operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
  • Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006963
    DOI: 10.1016/j.physa.2022.128124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006963
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    3. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    4. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    5. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    6. Nicosia, Gaia & Pacifici, Andrea & Pferschy, Ulrich, 2017. "Price of Fairness for allocating a bounded resource," European Journal of Operational Research, Elsevier, vol. 257(3), pages 933-943.
    7. Qi, Jianguo & Yang, Lixing & Di, Zhen & Li, Shukai & Yang, Kai & Gao, Yuan, 2018. "Integrated optimization for train operation zone and stop plan with passenger distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 151-173.
    8. Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.
    9. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    10. Barrena, Eva & Canca, David & Coelho, Leandro C. & Laporte, Gilbert, 2014. "Single-line rail rapid transit timetabling under dynamic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 134-150.
    11. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    12. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    13. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Canca, David & De-Los-Santos, Alicia & Laporte, Gilbert & Mesa, Juan A., 2019. "Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 1-30.
    3. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    4. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    5. Akoluk, Damla & Karsu, Özlem, 2022. "Ensuring multidimensional equality in public service," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    7. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    8. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    9. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    10. Gur, Yonatan & Iancu, Dan & Warnes, Xavier, 2020. "Value Loss in Allocation Systems with Provider Guarantees," Research Papers 3813, Stanford University, Graduate School of Business.
    11. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    12. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    13. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    14. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    15. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    16. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    17. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Manser, Patrick & Becker, Henrik & Hörl, Sebastian & Axhausen, Kay W., 2020. "Designing a large-scale public transport network using agent-based microsimulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 1-15.
    19. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    20. Yubai Zhang & Zhao Zhang & Zhaohui Liu, 2022. "The price of fairness for a two-agent scheduling game minimizing total completion time," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 2104-2122, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.