IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122005519.html
   My bibliography  Save this article

Assortative mixing in weighted directed networks

Author

Listed:
  • Pigorsch, U.
  • Sabek, M.

Abstract

We analyse assortative mixing, the tendency of vertices to bond with others based on similarities (usually excess vertex degree), in weighted networks, both directed and undirected. We propose a generalisation of the concept of assortativity by introducing our generalised assortativity coefficient. We also provide procedures that allow for both precisely assessing and interpreting the assortativity of weighted networks as well as its statistical significance. Finally, we demonstrate the usefulness of our proposed generalised assortativity coefficient by in-depth analysing the assortativity structure of several weighted real-world networks.

Suggested Citation

  • Pigorsch, U. & Sabek, M., 2022. "Assortative mixing in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005519
    DOI: 10.1016/j.physa.2022.127850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005519
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikail Rubinov, 2016. "Constraints and spandrels of interareal connectomes," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    2. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    3. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    4. Maslov, Sergei & Sneppen, Kim & Zaliznyak, Alexei, 2004. "Detection of topological patterns in complex networks: correlation profile of the internet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 529-540.
    5. Leung, C.C. & Chau, H.F., 2007. "Weighted assortative and disassortative networks model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 591-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    2. Sabek, M. & Pigorsch, U., 2023. "Local assortativity in weighted and directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arcagni, Alberto & Grassi, Rosanna & Stefani, Silvana & Torriero, Anna, 2021. "Extending assortativity: An application to weighted social networks," Journal of Business Research, Elsevier, vol. 129(C), pages 774-783.
    2. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    3. Christoph Schmidt & Thomas Weiss & Thomas Lehmann & Herbert Witte & Lutz Leistritz, 2013. "Extracting Labeled Topological Patterns from Samples of Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    4. Johannesson Magnus & Östling Robert & Ranehill Eva, 2010. "The Effect of Competition on Physical Activity: A Randomized Trial," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-31, September.
    5. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    8. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    9. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    10. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    11. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    12. Sarlin, Peter & von Schweinitz, Gregor, 2021. "Optimizing Policymakers’ Loss Functions In Crisis Prediction: Before, Within Or After?," Macroeconomic Dynamics, Cambridge University Press, vol. 25(1), pages 100-123, January.
    13. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    14. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    15. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    16. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    17. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    18. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    19. Francis, Bill B. & Mougoué, Mbodja & Panchenko, Valentyn, 2010. "Is there a symmetric nonlinear causal relationship between large and small firms?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 23-38, January.
    20. Priscila Espinosa & Jose M. Pavía, 2023. "Automation in Regional Economic Synthetic Index Construction with Uncertainty Measurement," Forecasting, MDPI, vol. 5(2), pages 1-19, April.
    21. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.