IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v603y2022ics0378437122005532.html
   My bibliography  Save this article

Trajectory-based analysis on pedestrian merging flow on a stair landing

Author

Listed:
  • Ye, Rui
  • Wang, Qiao
  • Zeng, Guang
  • Huang, Zhongyi
  • Gao, Yan
  • Fang, Zhiming

Abstract

The merging flow happens when pedestrians coming from the stair (referred to as stair crowd) encounter those coming from the floor (referred to as floor crowd) on the stair landing, which is usually thought to significantly reduce movement efficiency during building evacuation. However, currently investigations on it are still rare especially the experimental ones with trajectories. In this paper, characteristics of stair landing merging flow are analyzed, based on precise trajectories extracted from the heads through a controlled experiment. Due to the interference of floor crowd, the average path of stair crowd in merging flow experiment is less smooth, compared with that in experiment with no merging flow. Pedestrian total travel time and total travel distance on the stair landing exhibit a linear relation, but the fitting functions are varied depending on the movement directions (ascent and descent), merging conditions (with and without merging flow), and crowd types (floor crowd and stair crowd). The sum of flow rates for stair crowd and floor crowd before merging is larger than the flow rate of overall crowd after merging, due to the occurrence of congestion after merging. Microscopic fundamental diagrams based on Voronoi diagram for different movements are derived and compared. For movements without merging flow, the speed on the stair landing is higher during descent movement. While for movements with merging flow, the speed on the stair landing is higher during ascent movement, which results from the higher speed for ascent floor crowd because ascent floor crowd is not affected by the transition from stair to landing when just stepping onto the stair landing and is less affected by the merging phenomenon.

Suggested Citation

  • Ye, Rui & Wang, Qiao & Zeng, Guang & Huang, Zhongyi & Gao, Yan & Fang, Zhiming, 2022. "Trajectory-based analysis on pedestrian merging flow on a stair landing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  • Handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005532
    DOI: 10.1016/j.physa.2022.127853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005532
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahra Shahhoseini & Majid Sarvi, 2017. "Collective movements of pedestrians: How we can learn from simple experiments with non-human (ant) crowds," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    2. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    3. Steffen, B. & Seyfried, A., 2010. "Methods for measuring pedestrian density, flow, speed and direction with minimal scatter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1902-1910.
    4. Liang, Mengdi & Xu, Jie & Jia, Limin & Qin, Yong, 2020. "An improved model of passenger merging in a Y-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    2. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Li, Yongxing & Yang, Xiaoxia & Wang, Zijia & Chen, Liang & Chen, Yanyan, 2022. "Lane-design for mixed pedestrian flow in T-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Shi, Yihan & Xu, Jie & Zhang, Hui & Jia, Limin & Qin, Yong, 2022. "Empirical investigation on turning behavior of passengers in subway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    6. von Krüchten, Cornelia & Schadschneider, Andreas, 2017. "Empirical study on social groups in pedestrian evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 129-141.
    7. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    8. Nagahama, Akihito & Wada, Takahiro & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2021. "Detection of leader–follower combinations frequently observed in mixed traffic with weak lane-discipline," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    9. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    10. Fu, Libi & Zhang, Ying & Qin, Huigui & Shi, Qingxin & Chen, Qiyi & Chen, Yunqian & Shi, Yongqian, 2023. "A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    12. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    14. Martin, Rafael F. & Parisi, Daniel R., 2024. "Anisotropic contractile particle model with avoidance for simulating pedestrian navigation in dilute and dense systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    15. Feliciani, Claudio & Jia, Xiaolu & Murakami, Hisashi & Ohtsuka, Kazumichi & Vizzari, Giuseppe & Nishinari, Katsuhiro, 2023. "Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    16. Shi, Zhigang & Zhang, Jun & Song, Weiguo, 2021. "Where luggage-related facilities should be placed along passageways in traffic hubs: Right, left, or in the middle?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Zhang, Yijing & Lu, Linjun & Liu, Qiujia & Hu, Miaoqing, 2023. "Modeling of low-risk behavior of pedestrian movement based on dynamic data analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    19. Che, Maohao & Wong, Yiik Diew & Lum, Kit Meng & Wang, Xueqin, 2021. "Interaction behaviour of active mobility users in shared space," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 52-65.
    20. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.