Modeling of low-risk behavior of pedestrian movement based on dynamic data analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tra.2022.103576
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Lida & Chen, Tao & Wang, Yan & Yuan, Hongyong, 2015. "Congestion detection of pedestrians using the velocity entropy: A case study of Love Parade 2010 disaster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 200-209.
- H. Eugene Stanley, 2000. "Freezing by heating," Nature, Nature, vol. 404(6779), pages 718-719, April.
- Hughes, R.L., 2000. "The flow of large crowds of pedestrians," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(4), pages 367-370.
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Li, Na & Guo, Ren-Yong, 2020. "Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
- Xiaohong Li & Jianan Zhou & Feng Chen & Zan Zhang, 2018. "Cluster Risk of Walking Scenarios Based on Macroscopic Flow Model and Crowding Force Analysis," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
- Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
- Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
- Steffen, B. & Seyfried, A., 2010. "Methods for measuring pedestrian density, flow, speed and direction with minimal scatter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1902-1910.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng, Zhongxiang & Gao, Ya & Zhu, Dianchen & Chan, Ho-Yin & Zhao, Mingming & Xue, Rui, 2024. "Impact of risk perception and trust in autonomous vehicles on pedestrian crossing decision: Navigating the social-technological intersection with the ICLV model," Transport Policy, Elsevier, vol. 152(C), pages 71-86.
- Zongfeng Zou & Shuangping Kang, 2024. "Route Optimization for Hazardous Chemicals Transportation under Time-Varying Conditions," Sustainability, MDPI, vol. 16(2), pages 1-24, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
- Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
- Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Fu, Zhijian & Yang, Lizhong & Chen, Yanqiu & Zhu, Kongjin & Zhu, Shi, 2013. "The effect of individual tendency on crowd evacuation efficiency under inhomogeneous exit attraction using a static field modified FFCA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6090-6099.
- Seitz, Michael J. & Dietrich, Felix & Köster, Gerta, 2015. "The effect of stepping on pedestrian trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 594-604.
- Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
- Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
- Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
- Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
- Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
- Wang, Jia & Ni, Shunjiang & Shen, Shifei & Li, Shuying, 2019. "Empirical study of crowd dynamic in public gathering places during a terrorist attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1-9.
- Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
- Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
- Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
- Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
More about this item
Keywords
Pedestrian flow; Risk identification; Dynamic data; Video recognition; Conflict and congestion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:168:y:2023:i:c:s0965856422003275. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.