IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v176y2023ics0965856423002409.html
   My bibliography  Save this article

Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction

Author

Listed:
  • Feliciani, Claudio
  • Jia, Xiaolu
  • Murakami, Hisashi
  • Ohtsuka, Kazumichi
  • Vizzari, Giuseppe
  • Nishinari, Katsuhiro

Abstract

Most pedestrian crowds are composed of social groups that are typically formed by dyads (two members), triads (three members), or larger groups. Depending on the context, social groups may make up half or even more of the membership of the crowd. Therefore, understanding their motion is crucial for predicting crowd dynamics. The presence of social groups modifies crowd behavior. When the proportion and size of groups are known, crowd motion (e.g., the “flow” of passengers collectively moving inside a train station) could become predictable. However, a bidirectional flow experiment performed in 2010 revealed that the presence of groups could lead to partially surprising results because crowds composed of small social groups moved more smoothly than those composed of individuals (singletons). Results were partially disregarded because of statistical insignificance. A subsequent experiment in 2015 with latest tracking techniques resulted in similar results and investigated the cause of the superior flow in the presence of groups. The results revealed that when groups arrange themselves in certain shapes, their partially “obstructing” nature (in a counterintuitive manner) facilitates lane formation, which benefits overall crowd motion. Because the arrangement of a dyad, i.e., whether both members walk next to each other or in a front–back alignment, is partially linked to the coordination (or the lack thereof) between both members, predicting such a mechanism is difficult. Simulation results from a commercial software program confirmed that predicting the dynamics of social groups is not trivial; however, at the macroscopic scale, some general trends are depicted at least from a qualitative perspective. This study revealed that, whenever possible, several crowd composition patterns should be considered when planning crowd events or drafting safety guidelines for pedestrian facilities. Depending on the context, crowds composed of individuals may move smoother than social groups do, and the worst-case scenario should be used for determining safety margins. Thus, we revealed that predicting the motion of crowds composed of social groups is difficult because the microscopic organization within the group determines overall crowd dynamics. Although this internal organization may result in counterintuitively efficient group structures, the occurrence of such conditions depends on several variables, which renders crowd control in social groups complex, requiring close monitoring especially at high densities.

Suggested Citation

  • Feliciani, Claudio & Jia, Xiaolu & Murakami, Hisashi & Ohtsuka, Kazumichi & Vizzari, Giuseppe & Nishinari, Katsuhiro, 2023. "Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002409
    DOI: 10.1016/j.tra.2023.103820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geeske Scholz & Nanda Wijermans & Rocco Paolillo & Martin Neumann & Torsten Masson & Emile Chappin & Anne Templeton & Geo Kocheril, 2023. "Social Agents? A Systematic Review of Social Identity Formalizations," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(2), pages 1-6.
    2. Zeynep Yucel & Francesco Zanlungo & Claudio Feliciani & Adrien Gregorj & Takayuki Kanda, 2019. "Identification of social relation within pedestrian dyads," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-27, October.
    3. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    4. Francesco Zanlungo & Zeynep Yücel & Dražen Brščić & Takayuki Kanda & Norihiro Hagita, 2017. "Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-26, November.
    5. Xue, Shuqi & Shi, Xiaomeng & Shiwakoti, Nirajan, 2021. "Would walking hand-in-hand increase the traffic efficiency of children pedestrian flow?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Steffen, B. & Seyfried, A., 2010. "Methods for measuring pedestrian density, flow, speed and direction with minimal scatter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1902-1910.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    2. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    3. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    4. Liu, Weisong & Zhang, Jun & Rasa, Abdul Rahim & Li, Xudong & Ren, Xiangxia & Song, Weiguo, 2023. "Understanding step synchronization in social groups: A novel method to recognize group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    5. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    6. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    8. Hu, Yanghui & Bi, Yubo & Ren, Xiangxia & Huang, Shenshi & Gao, Wei, 2023. "Experimental study on the impact of a stationary pedestrian obstacle at the exit on evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    9. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Duives, Dorine C. & Daamen, Winnie & Hoogendoorn, Serge P., 2015. "Quantification of the level of crowdedness for pedestrian movements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 162-180.
    11. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    12. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
    14. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    15. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    16. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    17. Sun, Lijun & Tirachini, Alejandro & Axhausen, Kay W. & Erath, Alexander & Lee, Der-Horng, 2014. "Models of bus boarding and alighting dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 447-460.
    18. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    19. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    20. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.