IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v603y2022ics0378437122005131.html
   My bibliography  Save this article

A Lattice Kinetic Monte Carlo method to study drug release from swelling porous delivery systems

Author

Listed:
  • Ignacio, M.
  • Slater, G.W.

Abstract

We develop a flexible Lattice Kinetic Monte Carlo (LKMC) algorithm that allows us to simulate drug release from swelling systems such as hydrogels. Our algorithm can be used for a wide range of problems as long as the interactions between the drug particles and the medium can be described by a local effective diffusivity. Considering a spherically symmetric swelling system, we test the efficiency and accuracy of our LKMC algorithm by comparing our simulation data to the analytical solution of the diffusion equation in the adiabatic limit.

Suggested Citation

  • Ignacio, M. & Slater, G.W., 2022. "A Lattice Kinetic Monte Carlo method to study drug release from swelling porous delivery systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  • Handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005131
    DOI: 10.1016/j.physa.2022.127775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005131
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casault, Sébastien & Slater, Gary W., 2008. "Systematic characterization of drug release profiles from finite-sized hydrogels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5387-5402.
    2. Ignacio, Maxime & Chubynsky, Mykyta V. & Slater, Gary W., 2017. "Interpreting the Weibull fitting parameters for diffusion-controlled release data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 486-496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Kulveer & Satapathi, Soumitra & Jha, Prateek K., 2019. "“Ant-Wall” model to study drug release from excipient matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 98-108.
    2. Ignacio, M. & Slater, G.W., 2021. "Using fitting functions to estimate the diffusion coefficient of drug molecules in diffusion-controlled release systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Ignacio, Maxime & Chubynsky, Mykyta V. & Slater, Gary W., 2017. "Interpreting the Weibull fitting parameters for diffusion-controlled release data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 486-496.
    4. Gomes-Filho, Márcio Sampaio & Barbosa, Marco Aurélio Alves & Oliveira, Fernando Albuquerque, 2020. "A statistical mechanical model for drug release: Relations between release parameters and porosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Carr, Elliot J., 2022. "Exponential and Weibull models for spherical and spherical-shell diffusion-controlled release systems with semi-absorbing boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Filippini, Luke P. & Simpson, Matthew J. & Carr, Elliot J., 2023. "Simplified models of diffusion in radially-symmetric geometries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.