IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v626y2023ics0378437123006222.html
   My bibliography  Save this article

Simplified models of diffusion in radially-symmetric geometries

Author

Listed:
  • Filippini, Luke P.
  • Simpson, Matthew J.
  • Carr, Elliot J.

Abstract

We consider diffusion-controlled release of particles from d-dimensional radially-symmetric geometries. A quantity commonly used to characterise such diffusive processes is the proportion of particles remaining within the geometry over time, denoted as P(t). The stochastic approach for computing P(t) is time-consuming and lacks analytical insight into key parameters while the continuum approach yields complicated expressions for P(t) that obscure the influence of key parameters and complicate the process of fitting experimental release data. In this work, to address these issues, we develop several simple surrogate models to approximate P(t) by matching moments with the continuum analogue of the stochastic diffusion model. Surrogate models are developed for homogeneous slab, circular, annular, spherical and spherical shell geometries with a constant particle movement probability and heterogeneous slab, circular, annular and spherical geometries, comprised of two concentric layers with different particle movement probabilities. Each model is easy to evaluate, agrees well with both stochastic and continuum calculations of P(t) and provides analytical insight into the key parameters of the diffusive transport system: dimension, diffusivity, geometry and boundary conditions.

Suggested Citation

  • Filippini, Luke P. & Simpson, Matthew J. & Carr, Elliot J., 2023. "Simplified models of diffusion in radially-symmetric geometries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
  • Handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123006222
    DOI: 10.1016/j.physa.2023.129067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123006222
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Elliot J., 2022. "Exponential and Weibull models for spherical and spherical-shell diffusion-controlled release systems with semi-absorbing boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Ignacio, M. & Slater, G.W., 2021. "Using fitting functions to estimate the diffusion coefficient of drug molecules in diffusion-controlled release systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Ignacio, Maxime & Chubynsky, Mykyta V. & Slater, Gary W., 2017. "Interpreting the Weibull fitting parameters for diffusion-controlled release data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 486-496.
    4. Gomes-Filho, Márcio Sampaio & Barbosa, Marco Aurélio Alves & Oliveira, Fernando Albuquerque, 2020. "A statistical mechanical model for drug release: Relations between release parameters and porosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Elliot J., 2022. "Exponential and Weibull models for spherical and spherical-shell diffusion-controlled release systems with semi-absorbing boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Ignacio, M. & Slater, G.W., 2021. "Using fitting functions to estimate the diffusion coefficient of drug molecules in diffusion-controlled release systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Gomes-Filho, Márcio Sampaio & Barbosa, Marco Aurélio Alves & Oliveira, Fernando Albuquerque, 2020. "A statistical mechanical model for drug release: Relations between release parameters and porosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Ignacio, M. & Slater, G.W., 2022. "A Lattice Kinetic Monte Carlo method to study drug release from swelling porous delivery systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. Singh, Kulveer & Satapathi, Soumitra & Jha, Prateek K., 2019. "“Ant-Wall” model to study drug release from excipient matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 98-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123006222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.