IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics037843712200259x.html
   My bibliography  Save this article

Diffraction and interference with run-and-tumble particles

Author

Listed:
  • Maes, Christian
  • Meerts, Kasper
  • Struyve, Ward

Abstract

Run-and-tumble particles, frequently considered today for modeling bacterial locomotion, naturally appear outside a biological context as well. Here, we consider them in a quantum mechanical relation, using a wave function to drive their propulsion and tumbling. Such quantum-active motion realizes a jittery motion of Dirac electrons (as in the famous Zitterbewegung): the Dirac electron is a run-and-tumble particle, where the tumbling is between chiralities. We visualize the electron trajectories in single and double slit experiments and discuss their dependence on the spin-direction. In particular, that yields the time-of-arrival statistics of the electrons at the screen. Finally, we observe that away from pure quantum guidance, run-and-tumble particles with suitable spacetime-dependent parameters produce an interference pattern as well.

Suggested Citation

  • Maes, Christian & Meerts, Kasper & Struyve, Ward, 2022. "Diffraction and interference with run-and-tumble particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200259x
    DOI: 10.1016/j.physa.2022.127323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200259X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiss, George H, 2002. "Some applications of persistent random walks and the telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 381-410.
    2. Ch. Kurtsiefer & T. Pfau & J. Mlynek, 1997. "Measurement of the Wigner function of an ensemble of helium atoms," Nature, Nature, vol. 386(6621), pages 150-153, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2004. "Branching random motions, nonlinear hyperbolic systems and traveling waves," Borradores de Investigación 4331, Universidad del Rosario.
    2. Jonathan R. Potts, 2019. "Directionally Correlated Movement Can Drive Qualitative Changes in Emergent Population Distribution Patterns," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    3. Cvetićanin, Stevan M. & Zorica, Dušan & Rapaić, Milan R., 2021. "Non-local telegrapher’s equation as a transmission line model," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. García-Pelayo, Ricardo, 2007. "Solution of the persistent, biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 143-149.
    5. Nikita Ratanov & Mikhail Turov, 2023. "On Local Time for Telegraph Processes," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    6. Vallois, Pierre & Tapiero, Charles S., 2009. "A claims persistence process and insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 367-373, June.
    7. García-Pelayo, Ricardo, 2023. "New techniques to solve the 1-dimensional random flight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    8. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    9. Kolesnik, Alexander D., 2018. "Slow diffusion by Markov random flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 186-197.
    10. Enzo Orsingher & Manfred Marvin Marchione, 2025. "Planar Random Motions in a Vortex," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-42, March.
    11. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    12. Filliger, Roger & Hongler, Max-Olivier, 2004. "Supersymmetry in random two-velocity processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 141-150.
    13. Peggy Cénac & Arnaud Ny & Basile Loynes & Yoann Offret, 2018. "Persistent Random Walks. I. Recurrence Versus Transience," Journal of Theoretical Probability, Springer, vol. 31(1), pages 232-243, March.
    14. Van der Straeten, Erik & Naudts, Jan, 2008. "The 3-dimensional random walk with applications to overstretched DNA and the protein titin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6790-6800.
    15. Nikita Ratanov, 2022. "Kac-Ornstein-Uhlenbeck Processes: Stationary Distributions and Exponential Functionals," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2703-2721, December.
    16. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200259x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.