IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics0378437122002576.html
   My bibliography  Save this article

Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster

Author

Listed:
  • Phillips, J.C.
  • Moret, Marcelo A.
  • Zebende, Gilney F.
  • Chow, Carson C.

Abstract

The novel coronavirus SARS CoV-2 responsible for the COVID-19 pandemic and SARS CoV-1 responsible for the SARS epidemic of 2002-2003 share an ancestor yet evolved to have much different transmissibility and global impact 1. A previously developed thermodynamic model of protein conformations hypothesized that SARS CoV-2 is very close to a new thermodynamic critical point, which makes it highly infectious but also easily displaced by a spike-based vaccine because there is a tradeoff between transmissibility and robustness 2. The model identified a small cluster of four key mutations of SARS CoV-2 that predicts much stronger viral attachment and viral spreading compared to SARS CoV-1. Here we apply the model to the SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2)3 and predict, using no free parameters, how the new mutations will not diminish the effectiveness of current spike based vaccines and may even further enhance infectiousness by augmenting the binding ability of the virus.

Suggested Citation

  • Phillips, J.C. & Moret, Marcelo A. & Zebende, Gilney F. & Chow, Carson C., 2022. "Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002576
    DOI: 10.1016/j.physa.2022.127318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002576
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, J.C., 2021. "Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Phillips, J.C., 2014. "Fractals and self-organized criticality in proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 440-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernane Pereira & Ludmilla Monfort Oliveira Sousa & Maíra Lima Souza & Thiago B. Murari & Marcelo A. Moret, 2024. "Overview of the initial phase of scientific production on COVID-19 during the pandemic," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-11, July.
    2. Marcelo A. Moret & James C. Phillips, 2024. "Why and how did the COVID pandemic end abruptly?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, J.C., 2017. "Hidden thermodynamic information in protein amino acid mutation tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 676-680.
    2. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    3. Marcelo A. Moret & James C. Phillips, 2024. "Why and how did the COVID pandemic end abruptly?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-4, August.
    4. Phillips, J.C., 2016. "Bioinformatic scaling of allosteric interactions in biomedical isozymes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 289-294.
    5. Phillips, J.C., 2015. "Similarity is not enough: Tipping points of Ebola Zaire mortalities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 277-281.
    6. Phillips, J.C., 2017. "Autoantibody recognition mechanisms of MUC1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 244-249.
    7. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    8. Phillips, J.C., 2017. "Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 330-336.
    9. Filho, A.S. Nascimento & Araújo, M.L.V. & Miranda, J.G.V. & Murari, T.B. & Saba, H. & Moret, M.A., 2018. "Self-affinity and self-organized criticality applied to the relationship between the economic arrangements and the dengue fever spread in Bahia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 619-628.
    10. Voorhoeve, Niels & Allan, Douglas C. & Moret, M.A. & Zebende, G.F. & Phillips, J.C., 2018. "Why human milk is more nutritious than cow milk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 302-309.
    11. Sachdeva, Vedant & Phillips, James C., 2016. "Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 1-11.
    12. Phillips, J.C., 2021. "Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Xu, Xiu-Lian & Shi, Jin-Xuan & Wang, Jun & Li, Wenfei, 2021. "Long-range correlation and critical fluctuations in coevolution networks of protein sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.