IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v469y2017icp676-680.html
   My bibliography  Save this article

Hidden thermodynamic information in protein amino acid mutation tables

Author

Listed:
  • Phillips, J.C.

Abstract

We combine the standard 1992 20×20 substitution matrix based on block alignment, BLOSUM62, with the standard 1982 amino acid hydropathicity scale KD as well as the modern 2007 hydropathicity scale MZ, and compare the results. The 20-parameter KD and MZ hydropathicity scales have different thermodynamic character, corresponding to first- and second-order transitions. The KD and MZ comparisons show that the mutation rates reflect quantitative iteration of qualitative amino acid–phobic and -philic binary 2×10 properties that define quaternary 4×5 subgroups (but not quinary 5×4 subgroups), with the modern MZ bioinformatic scale giving much better results. The quaternary 5-mer MZ 4×5 subgroups are called mutons (Mu5). Among all hydropathicity scales, the MZ scale uniquely exhibits a smooth, deep mutational minimum at its center associated with alanine, glycine, the smallest amino acid, and histidine.

Suggested Citation

  • Phillips, J.C., 2017. "Hidden thermodynamic information in protein amino acid mutation tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 676-680.
  • Handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:676-680
    DOI: 10.1016/j.physa.2016.11.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116308809
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, J.C., 2015. "Phase transitions in the web of science," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 173-177.
    2. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    3. Phillips, J.C., 2014. "Fractals and self-organized criticality in proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 440-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moret, M.A. & Zebende, G.F. & Phillips, J.C., 2019. "Hydropathic wave ordering of alpha crystallin—Membrane interactions enhances human lens transparency and resists cataracts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 573-579.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, J.C., 2017. "Autoantibody recognition mechanisms of MUC1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 244-249.
    2. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    3. Phillips, J.C., 2017. "Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 330-336.
    4. Phillips, J.C. & Moret, Marcelo A. & Zebende, Gilney F. & Chow, Carson C., 2022. "Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    5. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    6. Marcelo A. Moret & James C. Phillips, 2024. "Why and how did the COVID pandemic end abruptly?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-4, August.
    7. Phillips, J.C., 2016. "Bioinformatic scaling of allosteric interactions in biomedical isozymes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 289-294.
    8. Phillips, J.C., 2015. "Similarity is not enough: Tipping points of Ebola Zaire mortalities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 277-281.
    9. Filho, A.S. Nascimento & Araújo, M.L.V. & Miranda, J.G.V. & Murari, T.B. & Saba, H. & Moret, M.A., 2018. "Self-affinity and self-organized criticality applied to the relationship between the economic arrangements and the dengue fever spread in Bahia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 619-628.
    10. Voorhoeve, Niels & Allan, Douglas C. & Moret, M.A. & Zebende, G.F. & Phillips, J.C., 2018. "Why human milk is more nutritious than cow milk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 302-309.
    11. Sachdeva, Vedant & Phillips, James C., 2016. "Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 1-11.
    12. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    13. Phillips, J.C., 2021. "Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Xu, Xiu-Lian & Shi, Jin-Xuan & Wang, Jun & Li, Wenfei, 2021. "Long-range correlation and critical fluctuations in coevolution networks of protein sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:676-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.