IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/731856.html
   My bibliography  Save this article

Global Bifurcation of a Novel Computer Virus Propagation Model

Author

Listed:
  • Jianguo Ren
  • Yonghong Xu
  • Jiming Liu

Abstract

In a recent paper by J. Ren et al. (2012), a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.

Suggested Citation

  • Jianguo Ren & Yonghong Xu & Jiming Liu, 2014. "Global Bifurcation of a Novel Computer Virus Propagation Model," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, April.
  • Handle: RePEc:hin:jnlaaa:731856
    DOI: 10.1155/2014/731856
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/731856.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/731856.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/731856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zhenhua & Gao, Hongxia & Wang, Dan & Alnuaim, Abeer Ali & Firdausi, Muhammad & Mostafa, Almetwally M., 2022. "SEI2RS malware propagation model considering two infection rates in cyber–physical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:731856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.