Machine learning approach versus probabilistic approach to model the departure time of non-mandatory trips
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2021.126492
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Jinjun & Chen, Xinqiang & Hu, Zheng & Zong, Fang & Han, Chunyang & Li, Leixiao, 2019. "Traffic flow prediction based on combination of support vector machine and data denoising schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
- Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
- Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
- Thorhauge, Mikkel & Swait, Joffre & Cherchi, Elisabetta, 2020. "The habit-driven life: Accounting for inertia in departure time choices for commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 272-289.
- Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
- Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zannat, Khatun E. & Choudhury, Charisma F. & Hess, Stephane, 2024. "Modelling time-of-travel preferences capturing correlations between departure times and activity durations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
- Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
- Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
- S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
- Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
- Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
- Junjie Fu & Xinqiang Chen & Shubo Wu & Chaojian Shi & Huafeng Wu & Jiansen Zhao & Pengwen Xiong, 2020. "Mining ship deficiency correlations from historical port state control (PSC) inspection data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.
- Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Nijkamp, Peter & Reggiani, Aura & Tsang, Wai Fai, 2004.
"Comparative modelling of interregional transport flows: Applications to multimodal European freight transport,"
European Journal of Operational Research, Elsevier, vol. 155(3), pages 584-602, June.
- Nijkamp, Peter & Reggiani, Aura & Tsang, Wai Fai, 1999. "Comparative modelling of interregional transport flows : applications to multimodal European freight transport," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Peter Davis & Pasquale Schiraldi, 2014.
"The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products,"
RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
- Davis, Peter & Schiraldi, Pasquale, 2013. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," LSE Research Online Documents on Economics 54252, London School of Economics and Political Science, LSE Library.
- Schiraldi, Pasquale & Davis, Peter, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," LSE Research Online Documents on Economics 46855, London School of Economics and Political Science, LSE Library.
- Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Zahira Batool & Bader Alhafi Alotaibi & Roshan K. Nayak, 2022. "Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
- Fraser, Iain & Balcombe, Kelvin & Williams, Louis & McSorley, Eugene, 2021. "Preference stability in discrete choice experiments. Some evidence using eye-tracking," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
More about this item
Keywords
Departure time; Multinomial logit; Probabilistic modeling; Probabilistic support vector machine; Machine learning modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007652. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.