IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v567y2021ics0378437120309900.html
   My bibliography  Save this article

The Ising universality class of kinetic exchange models of opinion dynamics

Author

Listed:
  • Mukherjee, Sudip
  • Biswas, Soumyajyoti
  • Chatterjee, Arnab
  • Chakrabarti, Bikas K.

Abstract

We show using scaling arguments and Monte Carlo simulations that a class of binary interacting models of opinion evolution belong to the Ising universality class in presence of an annealed noise term of finite amplitude. While the zero noise limit is known to show an active-absorbing transition, addition of annealed noise induces a continuous order–disorder transition with Ising universality class in the infinite-range (mean field) limit of the models.

Suggested Citation

  • Mukherjee, Sudip & Biswas, Soumyajyoti & Chatterjee, Arnab & Chakrabarti, Bikas K., 2021. "The Ising universality class of kinetic exchange models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  • Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309900
    DOI: 10.1016/j.physa.2020.125692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309900
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biswas, Soumyajyoti & Chatterjee, Arnab & Sen, Parongama, 2012. "Disorder induced phase transition in kinetic models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3257-3265.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    4. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    5. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    6. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    2. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    3. Sokolov, Andrey & Melatos, Andrew & Kieu, Tien, 2010. "Laplace transform analysis of a multiplicative asset transfer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2782-2792.
    4. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    6. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    7. Thitithep Sitthiyot & Kanyarat Holasut, 2024. "Income distribution in Thailand is scale-invariant," Papers 2402.01141, arXiv.org.
    8. Maria Letizia Bertotti & Amit K Chattopadhyay & Giovanni Modanese, 2017. "Economic inequality and mobility for stochastic models with multiplicative noise," Papers 1702.08391, arXiv.org.
    9. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    11. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    12. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    14. Fix, Blair, 2017. "Evidence for a Power Theory of Personal Income Distribution," Working Papers on Capital as Power 2017/03, Capital As Power - Toward a New Cosmology of Capitalism.
    15. Yao Li & Wenhao Lin & Yucheng Dong & Cong-Cong Li & Francisco Herrera, 2024. "Consensus Reaching with Dynamic Trust Relationships and Cost-Learning in Group Decision Making," Group Decision and Negotiation, Springer, vol. 33(5), pages 1269-1300, October.
    16. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    17. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    18. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    19. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    20. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.