IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v565y2021ics037843712030861x.html
   My bibliography  Save this article

An agent-based model for teaching–learning processes

Author

Listed:
  • Ormazábal, Ignacio
  • Borotto, Félix A.
  • Astudillo, Hernán F.

Abstract

This paper presents an agent-based model for describing the increase the knowledge by accumulating the information needed to complete a learning task or objectives, based on phenomena studied by behavioral and learning scientists. From the simulations, the average increase rate in knowledge, the skewness and kurtosis of knowledge distributions, and grade distributions are determined. These tools make it possible to evaluate the efficiency of teaching strategies and the performance of learning in the classroom. The present model significantly reproduces the phenomenology obtained in Bordogna and Albano (2001), showing first and second-order phase transitions and the temporal dynamics of knowledge. Furthermore, the results of our model allow us to built a gas model analogy. Some of the study cases show characteristics of systems far from the state of thermodynamic equilibrium. This allows us to use the known techniques from gas models to interpret the dynamics of the simulated learning process. The presented model does not describe the teaching–learning process in all its complexity. We use a simple behavioral characteristic of the persons, namely, the inattentional private experience. However, it allows us to prove learning strategies to optimize the learning process. Also, this model is a starting point to propose new models with more elements from neuroscience and sociophysics to study in greater depth the dynamics of the classroom.

Suggested Citation

  • Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2021. "An agent-based model for teaching–learning processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  • Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s037843712030861x
    DOI: 10.1016/j.physa.2020.125563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030861X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clelia M. Bordogna & Ezequiel V. Albano, 2001. "Phase Transitions In A Model For Social Learning Via The Internet," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1241-1250.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    3. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    4. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    5. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    6. Ismo T. Koponen & Maija Nousiainen, 2018. "An Agent-Based Model of Discourse Pattern Formation in Small Groups of Competing and Cooperating Members," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-1.
    7. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    8. Bordogna, Clelia M. & Albano, Ezequiel V., 2003. "Simulation of social processes: application to social learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 281-286.
    9. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Collard, 2022. "The “flat peer learning” agent-based model," Journal of Computational Social Science, Springer, vol. 5(1), pages 161-187, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    2. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    3. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    4. Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
    5. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.
    6. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    7. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    8. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    9. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    10. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    11. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    12. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    13. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    14. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. A. Lykov & S. Muzychka & K. Vaninsky, 2012. "Investor's sentiment in multi-agent model of the continuous double auction," Papers 1208.3083, arXiv.org, revised Feb 2016.
    16. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    17. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    18. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    19. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    20. Dias, Thiago & Gonçalves, Sebastián, 2024. "Effectiveness of wealth-based vs exchange-based tax systems in reducing inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s037843712030861x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.