IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v563y2021ics0378437120307640.html
   My bibliography  Save this article

Delay-independent traffic flux control for a discrete-time lattice hydrodynamic model with time-delay

Author

Listed:
  • Pan, Dong-Bo
  • Zhang, Geng
  • Jiang, Shan
  • Zhang, Yu
  • Cui, Bo-Yuan

Abstract

A discrete-time lattice hydrodynamic model with time-delay and delay-independent traffic flux control signal is introduced. The new model is analyzed with the discrete-time Lyapunov stability theorem and a sufficient stable condition of the model is presented in the form of linear matrix inequality. Through numerical simulation, the traffic flow evolution rules under different conditions of time-delay and control gain are demonstrated and compared. All the results show that the traffic system with time-delay can easily evolve into traffic congestion comparing to the traffic system without time-delay. Also the discrete-time traffic flux control signal can improve the stable level of traffic flow.

Suggested Citation

  • Pan, Dong-Bo & Zhang, Geng & Jiang, Shan & Zhang, Yu & Cui, Bo-Yuan, 2021. "Delay-independent traffic flux control for a discrete-time lattice hydrodynamic model with time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
  • Handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307640
    DOI: 10.1016/j.physa.2020.125440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307640
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    2. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "Feedback control method in lattice hydrodynamic model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 651-656.
    3. Zhang, Yu & Wang, Sha & Pan, Dong-bo & Zhang, Geng, 2021. "Stability analysis for a new lattice hydrodynamic model with time-varying delay in sensing traffic flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Tian, Jun-fang & Yuan, Zhen-zhou & Jia, Bin & Li, Ming-hua & Jiang, Guo-jun, 2012. "The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4476-4482.
    5. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    6. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.
    7. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    8. Zhang, Yi-cai & Xue, Yu & Shi, Yin & Guo, Yan & Wei, Fang-ping, 2018. "Congested traffic patterns of two-lane lattice hydrodynamic model with partial reduced lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 135-147.
    9. Zhipeng Li & Xingli Li & Fuqiang Liu, 2008. "STABILIZATION ANALYSIS AND MODIFIED KdV EQUATION OF LATTICE MODELS WITH CONSIDERATION OF RELATIVE CURRENT," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1163-1173.
    10. Zhao, Hongzhuan & Zhang, Geng & Li, Wenyong & Gu, Tianlong & Zhou, Dan, 2018. "Lattice hydrodynamic modeling of traffic flow with consideration of historical current integration effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1204-1211.
    11. Zhang, Geng & Zhang, Yu & Pan, Dong-Bo & Huang, Ren-Jie, 2019. "Study on the continuous delayed optimal flow on traffic stability in a new macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    13. Li, Xiaoqin & Fang, Kangling & Peng, Guanghan, 2017. "A new lattice model accounting for multiple optimal current differences’ anticipation effect in two-lane system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 814-826.
    14. Cheng, Rongjun & Wang, Yunong, 2019. "An extended lattice hydrodynamic model considering the delayed feedback control on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 510-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Wang, Sha & Pan, Dong-bo & Zhang, Geng, 2021. "Stability analysis for a new lattice hydrodynamic model with time-varying delay in sensing traffic flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    4. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    8. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    11. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    12. Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    13. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    14. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    16. Li, Wei-Hong & Huang, Hai-Jun & Shang, Hua-Yan, 2020. "Dynamic equilibrium commuting in a multilane system with ridesharing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    17. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    18. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    20. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.