IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v486y2017icp814-826.html
   My bibliography  Save this article

A new lattice model accounting for multiple optimal current differences’ anticipation effect in two-lane system

Author

Listed:
  • Li, Xiaoqin
  • Fang, Kangling
  • Peng, Guanghan

Abstract

This paper extends a two-lane lattice hydrodynamic traffic flow model to take into account the driver’s anticipation effect in sensing the multiple optimal current differences. Based on the proposed model, we derive analytically the effect of driver’s anticipation of multiple optimal current differences on the instability of traffic dynamics. The phase diagrams have been plotted and discussed that the stability region enhances with anticipation effect in sensing multiple optimal current differences. Through simulation, it is found that the oscillation of density wave around critical density decreases with an increase in lattice number and anticipation time for transient and steady state. The simulation results are in good agreement with the theoretical analysis, which show that considering the driver’s anticipation of multiple optimal current differences in two-lane lattice model stabilizes the traffic flow and suppresses the traffic jam efficiently.

Suggested Citation

  • Li, Xiaoqin & Fang, Kangling & Peng, Guanghan, 2017. "A new lattice model accounting for multiple optimal current differences’ anticipation effect in two-lane system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 814-826.
  • Handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:814-826
    DOI: 10.1016/j.physa.2017.05.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117305794
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Wang, Sha & Pan, Dong-bo & Zhang, Geng, 2021. "Stability analysis for a new lattice hydrodynamic model with time-varying delay in sensing traffic flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Jin, Zhizhan & Li, Zhipeng & Cheng, Rongjun & Ge, Hongxia, 2018. "Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 278-288.
    3. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Jin, Zhizhan & Yang, Zaili & Ge, Hongxia, 2018. "Energy consumption investigation for a new car-following model considering driver’s memory and average speed of the vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1038-1049.
    5. Pan, Dong-Bo & Zhang, Geng & Jiang, Shan & Zhang, Yu & Cui, Bo-Yuan, 2021. "Delay-independent traffic flux control for a discrete-time lattice hydrodynamic model with time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    6. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:814-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.