IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v117y2018icp76-83.html
   My bibliography  Save this article

Novel results on projective synchronization of fractional-order neural networks with multiple time delays

Author

Listed:
  • Zhang, Weiwei
  • Cao, Jinde
  • Wu, Ranchao
  • Chen, Dingyuan
  • Alsaadi, Fuad E.

Abstract

This paper investigates a projective synchronization of fractional-order neural networks (FONN) with multiple time delays, and two new synchronization conditions are derived by combining open loop control and linear control. This is achieved by employing stability theorem of linear fractional order systems with multiple delays and comparison principle. Feasibility of the theoretical results is validated through numerical simulations.

Suggested Citation

  • Zhang, Weiwei & Cao, Jinde & Wu, Ranchao & Chen, Dingyuan & Alsaadi, Fuad E., 2018. "Novel results on projective synchronization of fractional-order neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 76-83.
  • Handle: RePEc:eee:chsofr:v:117:y:2018:i:c:p:76-83
    DOI: 10.1016/j.chaos.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791830420X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    2. Song, Qiankun & Wang, Zidong, 2008. "Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3314-3326.
    3. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    4. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    5. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    6. Zheng, Mingwen & Wang, Zeming & Li, Lixiang & Peng, Haipeng & Xiao, Jinghua & Yang, Yixian & Zhang, Yanping & Feng, Cuicui, 2018. "Finite-time generalized projective lag synchronization criteria for neutral-type neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 195-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    3. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    4. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Xiao, Shasha & Wang, Zhanshan & Ma, Lei, 2023. "Synchronization Analysis of Fractional Order Delayed BAM Neural Networks via Multi-Delay-Boundary Inequality," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    6. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    7. Jia, You & Wu, Huaiqin & Cao, Jinde, 2020. "Non-fragile robust finite-time synchronization for fractional-order discontinuous complex networks with multi-weights and uncertain couplings under asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    8. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    9. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    10. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Shafiya, M. & Nagamani, G. & Dafik, D., 2022. "Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 168-186.
    15. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    16. Wang, Shaojie & Bekiros, Stelios & Yousefpour, Amin & He, Shaobo & Castillo, Oscar & Jahanshahi, Hadi, 2020. "Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    2. Wang, Changyou & Yang, Qiang & Zhuo, Yuan & Li, Rui, 2020. "Synchronization analysis of a fractional-order non-autonomous neural network with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    4. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.
    6. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    7. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    8. Yao, Zichen & Yang, Zhanwen & Zhang, Yusong, 2021. "A stability criterion for fractional-order complex-valued differential equations with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    11. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    12. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    14. Samidurai, Rajendran & Manivannan, Raman, 2015. "Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 743-762.
    15. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Ricardo Almeida & Agnieszka B. Malinowska & Tatiana Odzijewicz, 2019. "Optimal Leader–Follower Control for the Fractional Opinion Formation Model," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1171-1185, September.
    17. Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.
    18. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    19. Chen, Hao & Sun, Jitao, 2012. "Stability analysis for coupled systems with time delay on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 528-534.
    20. Chen, Dazhao & Zhang, Zhengqiu, 2022. "Globally asymptotic synchronization for complex-valued BAM neural networks by the differential inequality way," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:117:y:2018:i:c:p:76-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.