IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v553y2020ics0378437120303253.html
   My bibliography  Save this article

Evolutionary accumulated temptation game on small world networks

Author

Listed:
  • Lin, Zhiqi
  • Xu, Hedong
  • Fan, Suohai

Abstract

The temptation in the traditional prisoner’s dilemma is constant. To explore the evolution of temptations, the accumulated temptation game is proposed, where the temporal temptation is of heterogeneity among agents according to historical strategies. Agents accumulate the temptations by cooperation but consume the temptation by defection. The accumulation factor is introduced to measure the amplitude of the variation of temptations. During the evolutionary process, the density of cooperators and the average temptation may move towards the same direction. Cooperative behaviors will be eliminated if the accumulation factor is large enough. As an interesting result, a fraction of agents may keep cooperation constantly for accumulating temptations and they instantaneously defect at a certain time. The higher accumulation factor accelerates the instantaneous defection of agents. The completely random networks play an essential role in motivating cooperation when the temptation is small.

Suggested Citation

  • Lin, Zhiqi & Xu, Hedong & Fan, Suohai, 2020. "Evolutionary accumulated temptation game on small world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  • Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303253
    DOI: 10.1016/j.physa.2020.124665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303253
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Hedong & Tian, Cunzhi & Ye, Wenxing & Fan, Suohai, 2018. "Effects of investors’ power correlations in the power-based game on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 424-432.
    2. Ni, Y.C. & Xu, C. & Hui, P.M. & Johnson, N.F., 2009. "Cooperative behavior in evolutionary snowdrift game with bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4856-4862.
    3. Xu, Hedong & Tian, Cunzhi & Xiao, Xinrong & Fan, Suohai, 2018. "Evolutionary investors’ power-based game on networks," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 125-133.
    4. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Effect of strategy-assortativity on investor sharing games in the market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 211-225.
    5. A. Szolnoki & M. Perc, 2009. "Promoting cooperation in social dilemmas via simple coevolutionary rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 337-344, February.
    6. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Evolutionary investor sharing game on networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 138-145.
    7. Ye, Wenxing & Fan, Suohai, 2017. "Evolutionary snowdrift game with rational selection based on radical evaluation," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 310-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chengbin & Wang, Chaoqian & Xia, Haoxiang, 2024. "Co-evolution of cooperation and extortion with resource allocation in spatial multigame," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    2. Song, Shenpeng & Feng, Yuhao & Xu, Wenzhe & Li, Hui-Jia & Wang, Zhen, 2022. "Evolutionary prisoner’s dilemma game on signed networks based on structural balance theory," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Xinyi Xie & Liming Ying & Xue Cui, 2022. "Price Strategy Analysis of Electricity Retailers Based on Evolutionary Game on Complex Networks," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    5. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    7. Xie, Yunya & Bai, Yu & Zhang, Yankun & Peng, Zhengyin, 2024. "Trust-induced cooperation under the complex interaction of networks and emotions," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Liping & Xu, Hedong & Tian, Cunzhi & Fan, Suohai, 2021. "Evolutionary dynamics of information in the market: Transmission and trust," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Ye, Wenxing & Fan, Suohai, 2020. "Evolutionary traveler’s dilemma game based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    4. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Effect of strategy-assortativity on investor sharing games in the market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 211-225.
    5. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Evolutionary investor sharing game on networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 138-145.
    6. Song, Fanpeng & Wu, Jianliang & Fan, Suohai & Jing, Fei, 2020. "Transcendental behavior and disturbance behavior favor human development," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    7. Xu, Hedong & Tian, Cunzhi & Ye, Wenxing & Fan, Suohai, 2018. "Effects of investors’ power correlations in the power-based game on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 424-432.
    8. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    9. Li, Cong & Xu, Hedong & Fan, Suohai, 2021. "Evolutionary compromise game on assortative mixing networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. Xu, Hedong & Tian, Cunzhi & Xiao, Xinrong & Fan, Suohai, 2018. "Evolutionary investors’ power-based game on networks," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 125-133.
    11. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    12. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    13. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    14. Luo, Chao & Jiang, Zhipeng, 2017. "Coevolving allocation of resources and cooperation in spatial evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 47-57.
    15. Shen, Chen & Li, Xiaoping & Shi, Lei & Deng, Zhenghong, 2017. "Asymmetric evaluation promotes cooperation in network population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 391-397.
    16. Li, Bing & Zhao, Xiaowei & Xia, Haoxiang, 2019. "Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 1-8.
    17. Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Zhang, Mengshu & Ren, Tianyu & Zeng, Xiao-Jun & Li, Jia, 2024. "Promoting cooperation through dynamic trustworthiness in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    19. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    20. Zhang, Zhipeng & Wu, Yu’e & Zhang, Shuhua, 2022. "Reputation-based asymmetric comparison of fitness promotes cooperation on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.