IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i8p3981-4002.html
   My bibliography  Save this article

The impact of green consumers on electric vehicle charging station diffusion based on complex network evolutionary game

Author

Listed:
  • Feng Liu
  • Xingjun Huang
  • Longxiao Li

Abstract

The disparity between the supply and demand for public charging stations impedes road vehicle electrification. The public charging station, a socially produced artefact, is subject to customer preferences and government regulatory limits. However, traditional knowledge does not completely capture the complex dynamics behind the public charging station investment, and a combined interactive decision review is inadequate. To examine enhanced dynamic interactions, this paper provides a complex network evolutionary game model. According to the findings, subsidies for charging infrastructure construction are more vital than electric vehicle subsidies. Under present market conditions, removing the electric vehicle subsidy reduces the market percentage of charging stations by 6%, whereas removing the charging station construction incentive results in a 35% decline. Second, charging price and charging station diffusion has an inverted U-shaped relationship, and increasing the oil price slows charging station dispersion. Third, the construction cost has less of an influence on charging station diffusion. Finally, green consumer preferences are the key driver of public charging station investment. An increase in consumer preference from 0.17 to 0.38 would lead to a 30% increase in the market share of the charging station industry from 53% to 83%. Based on these results, policy implications for the investment in public charging stations are discussed.

Suggested Citation

  • Feng Liu & Xingjun Huang & Longxiao Li, 2024. "The impact of green consumers on electric vehicle charging station diffusion based on complex network evolutionary game," Energy & Environment, , vol. 35(8), pages 3981-4002, December.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:8:p:3981-4002
    DOI: 10.1177/0958305X231164678
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X231164678
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X231164678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    2. Yenipazarli, A. & Vakharia, A., 2015. "Pricing, market coverage and capacity: Can green and brown products co-exist?," European Journal of Operational Research, Elsevier, vol. 242(1), pages 304-315.
    3. Feng Liu & Yingshuang Tan & Sudipto Sarkar & Xueqing Zhang & Xingjun Huang, 2023. "When to invest in electric vehicles under dual credit policy: A real options approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2186-2198, June.
    4. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    5. Yao, Xusheng & Ma, Shoufeng & Bai, Yin & Jia, Ning, 2022. "When are new energy vehicle incentives effective? Empirical evidence from 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 207-224.
    6. Zhou, Yu & Xiong, Yu & Jin, Minyue, 2021. "Less is more: Consumer education in a closed-loop supply chain with remanufacturing," Omega, Elsevier, vol. 101(C).
    7. Ardeshiri, Ali & Rashidi, Taha Hossein, 2020. "Willingness to pay for fast charging station for electric vehicles with limited market penetration making," Energy Policy, Elsevier, vol. 147(C).
    8. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    9. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    10. Keumju Lim & Justine Jihyun Kim & Jongsu Lee, 2020. "Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea," Energy & Environment, , vol. 31(8), pages 1350-1366, December.
    11. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Evolutionary investor sharing game on networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 138-145.
    12. Yang, Han-Xin & Chen, Xiaojie, 2018. "Promoting cooperation by punishing minority," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 460-466.
    13. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    2. Chen, Rongkai & Fan, Ruguo & Wang, Dongxue & Yao, Qianyi, 2023. "Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: An evolutionary analysis in complex network," Energy, Elsevier, vol. 264(C).
    3. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    4. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    5. Song, Fanpeng & Wu, Jianliang & Fan, Suohai & Jing, Fei, 2020. "Transcendental behavior and disturbance behavior favor human development," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    6. Dongpu Fu & Jiarui Sun & Cuiyou Yao & Fulei Shi, 2024. "The influence of policy incentives on the diffusion of battery-swapping taxis and stations: a coupled evolutionary game model in complex networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26945-26969, October.
    7. Chen, Shangrong & Bravo-Melgarejo, Sai & Mongeau, Romain & Malavolti, Estelle, 2023. "Adopting and diffusing hydrogen technology in air transport: An evolutionary game theory approach," Energy Economics, Elsevier, vol. 125(C).
    8. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    9. Yaohong Yang & Shuwen Yang & Yang Yang & Xiaodan Yun & Yonghao Wang, 2024. "Study on Green Transformation Evolution of Construction Enterprises Based on Dissemination and Complex Network Game," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    10. Wenjun Hu & Haiyan Tian & Gang Zhang, 2019. "Bifurcation Analysis of Three-Strategy Imitative Dynamics with Mutations," Complexity, Hindawi, vol. 2019, pages 1-8, October.
    11. Chang, Tai-Wei, 2023. "An indispensable role in promoting the electric vehicle Industry: An empirical test to explore the integration framework of electric vehicle charger and electric vehicle purchase behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    12. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    13. Zhang, Juan & Huang, Jian, 2021. "Vehicle product-line strategy under government subsidy programs for electric/hybrid vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    14. Fan, Ruguo & Bao, Xuguang & Du, Kang & Wang, Yuanyuan & Wang, Yitong, 2022. "The effect of government policies and consumer green preferences on the R&D diffusion of new energy vehicles: A perspective of complex network games," Energy, Elsevier, vol. 254(PA).
    15. Ye, Wenxing & Fan, Suohai, 2020. "Evolutionary traveler’s dilemma game based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    16. Jin, Minyue & Li, Baoyong & Xiong, Yu & Chakraborty, Ratula & Zhou, Yu, 2023. "Implications of coproduction technology on waste management: Who can benefit from the coproduct made of leftover materials?," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1248-1259.
    17. Wang, Junling & Cheng, Siyu & Guo, Xinyu & Xu, Xin & Wang, Zehao, 2024. "An evolutionary analysis of the diffusion of low-carbon technology innovation in supply networks," Research in International Business and Finance, Elsevier, vol. 70(PB).
    18. Songtao He & Yifan Tang, 2024. "Effects of Personalized Demands on the Digital Diffusion of Enterprises: A Complex Network Evolution Game Model-Based Study," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12854-12880, September.
    19. Yu, Liukai & Zheng, Junjun & Ma, Gang & Jiao, Yangyang, 2023. "Analyzing the evolution trend of energy conservation and carbon reduction in transportation with promoting electrification in China," Energy, Elsevier, vol. 263(PD).
    20. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:8:p:3981-4002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.