IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp1-8.html
   My bibliography  Save this article

Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game

Author

Listed:
  • Li, Bing
  • Zhao, Xiaowei
  • Xia, Haoxiang

Abstract

Migration is an important factor in the Spatial Prisoners Dilemma Game. An appropriate migration mechanism can improve the level of cooperation in the system. A well-noted mechanism is success-driven migration. However, if individuals migrations are solely driven by payoff, small groups of the individuals may geographically gather into scattered clusters, resulting in the reduction of the cooperation level of the entire population. In this paper, we therefore investigate whether this problem can be resolved by respectively mixing the success-driven migration with two additional migration mechanisms to form two new hybrid migration mechanisms. The first means of hybridization is to mix with the Mean-payoff-driven migration, in which an individual migrates to its first-order neighboring site when its payoff is less than the mean payoff of the whole population. The second means is to mix with the Escaping-defector-driven migration, in which an individual migrates according to the number of defectors among its neighbors. We compare these two hybrid mechanisms with the original migration mechanism that combines the success-driven and random-driven migrations. The simulation results show that the hybrid mechanisms we proposed can effectively eliminate the betrayal clusters and the cooperation level of the system can noticeably be improved. The effect of improving the cooperation level is more significant in case that the initial population is sparse.

Suggested Citation

  • Li, Bing & Zhao, Xiaowei & Xia, Haoxiang, 2019. "Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 1-8.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:1-8
    DOI: 10.1016/j.physa.2018.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311440
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhen & Chen, Tianyi & Wang, Xingpu & Jin, Jiuwu & Li, Mingchu, 2013. "Evolution of co-operation among mobile agents with different influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4655-4662.
    2. Zhang, Chunyan & Zhang, Jianlei & Xie, Guangming, 2014. "Evolution of cooperation among game players with non-uniform migration scopes," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 103-111.
    3. Ren, Yizhi & Chen, Xiangyu & Wang, Zhen & Shi, Benyun & Cui, Guanghai & Wu, Ting & Choo, Kim-Kwang Raymond, 2018. "Neighbor-considered migration facilitates cooperation in prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 95-105.
    4. Wang, Zhen & Yu, Chao & Cui, Guang-Hai & Li, Ya-Peng & Li, Ming-Chu, 2016. "Evolution of cooperation in spatial iterated Prisoner’s Dilemma games under localized extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 566-575.
    5. Rui Cong & Bin Wu & Yuanying Qiu & Long Wang, 2012. "Evolution of Cooperation Driven by Reputation-Based Migration," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    6. Zhen Wang & Zhen Wang & Yuan-Han Yang & Ming-Xing Yu & Li-Guo Liao, 2012. "Age-Related Preferential Selection Can Promote Cooperation In The Prisoner'S Dilemma Game," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-11.
    7. A. Szolnoki & M. Perc, 2009. "Promoting cooperation in social dilemmas via simple coevolutionary rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 337-344, February.
    8. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    9. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    10. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2018. "Promotion of cooperation by adaptive interaction: The role of heterogeneity in neighborhoods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 483-491.
    11. Zhang, Jun & Wang, Wei-Ye & Du, Wen-Bo & Cao, Xian-Bin, 2011. "Evolution of cooperation among mobile agents with heterogenous view radii," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2251-2257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2022. "Hybrid learning promotes cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Jinzhuo Liu & Mao Peng & Yunchen Peng & Yong Li & Chen Chu & Xiaoyu Li & Qing Liu, 2021. "Effects of inequality on a spatial evolutionary public goods game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-7, August.
    4. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    7. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. Gao, Bo & Hong, Jie & Guo, Hao & Dong, Suyalatu & Lan, Zhong-Zhou, 2023. "Cooperative evolution and symmetry breaking in interdependent networks based on alliance mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    4. Zhang, Zhipeng & Wu, Yu’e & Zhang, Shuhua, 2022. "Reputation-based asymmetric comparison of fitness promotes cooperation on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Wang, Zhen & Zhang, Geng-shun & Ding, Hong & Cui, Guang-Hai & Yao, Ye, 2019. "Strategy imitation behavior driven influence adjustment promotes cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Cui, Guang-Hai & Li, Ming-Chu & Fan, Xin-Xin & Deonauth, Nakema & Wang, Zhen, 2014. "Optimism when winning and cautiousness when losing promote cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 181-189.
    8. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    9. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    10. Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    12. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    13. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Tamas David-Barrett, 2022. "Clustering Drives Cooperation on Reputation Networks, All Else Fixed," Papers 2203.00372, arXiv.org.
    15. Tian, Yue & Gao, Shun & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2024. "Particle swarm intelligence promotes cooperation by adapting interaction radii in co-evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    16. You, Tao & Zhang, Hailun & Zhang, Ying & Li, Qing & Zhang, Peng & Yang, Mei, 2022. "The influence of experienced guider on cooperative behavior in the Prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    17. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    18. Szabolcs Számadó & Ferenc Szalai & István Scheuring, 2016. "Deception Undermines the Stability of Cooperation in Games of Indirect Reciprocity," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    19. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Gu, Cuiling, 2022. "The rise and fall of cooperation in populations with multiple groups," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    20. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.