IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437120302181.html
   My bibliography  Save this article

Experimental study on dynamics characteristic parameter of turning behavior in self-driven mechanism

Author

Listed:
  • Cheng, Han
  • Peng, Fei
  • Huang, Danyan
  • Liu, Shaobo
  • Ni, Yong
  • Yang, Lizhong

Abstract

When changing their walking direction, pedestrians would choose different strategies for different turning angles. Step turn is for a small angle, and spin turn is for a large angle. However, previous studies on the mechanism of individual pedestrian modeling have rarely focused on this phenomenon. To clarify this point, this study performed experiments on individuals to investigate the turning process in three different physical environments—brightness, darkness with evacuation sign, and darkness without evacuation sign. Based on the self-driven mechanism, we propose a dynamical parameter to describe the features of individual turning behavior, i.e., turning scale. The experimental results indicate that when the turning radius is small, the pedestrian would apply significantly more force to increase the centripetal acceleration than the tangential acceleration to make the turn. Hereby, our work validates the existence of different turning strategies for different turning angles. Further, the difference in the choice of strategies in different physical environments is analyzed. The research achievements in this work provide a new insight to investigate pedestrian behavior, and provide data support for modeling individual pedestrian movements more accurately.

Suggested Citation

  • Cheng, Han & Peng, Fei & Huang, Danyan & Liu, Shaobo & Ni, Yong & Yang, Lizhong, 2020. "Experimental study on dynamics characteristic parameter of turning behavior in self-driven mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120302181
    DOI: 10.1016/j.physa.2020.124497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120302181
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Chen & Martin Treiber & Venkatesan Kanagaraj & Haiying Li, 2018. "Social force models for pedestrian traffic – state of the art," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 625-653, September.
    2. Liu, Chi & Song, Weiguo & Fu, Libi & Lian, Liping & Lo, Siuming, 2017. "Experimental study on relaxation time in direction changing movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 44-52.
    3. Ma, Peijie & Jiang, Yanqun & Zhu, Junfang & Chen, Bokui, 2019. "The effect of escape signs on the pedestrians evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    5. Zhao, Yongxiang & Lu, Tuantuan & Su, Wenliang & Wu, Peng & Fu, Libi & Li, Meifang, 2019. "Quantitative measurement of social repulsive force in pedestrian movements based on physiological responses," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 1-20.
    6. Chen Zhou & Ming Han & Qi Liang & Yi-Fei Hu & Shu-Guang Kuai, 2019. "A social interaction field model accurately identifies static and dynamic social groupings," Nature Human Behaviour, Nature, vol. 3(8), pages 847-855, August.
    7. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    2. Ding, Ning & Zhu, Yu & Liu, Xinyan & Dong, Dapeng & Wang, Yang, 2024. "A modified social force model for crowd evacuation considering collision predicting behaviors," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Yang, Junheng & Zang, Xiaodong & Chen, Weiying & Luo, Qiang & Wang, Rui & Liu, Yuanqian, 2024. "Improved social force model based on pedestrian collision avoidance behavior in counterflow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    4. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Song, Weiguo, 2024. "Collision avoidance behaviours of luggage-laden pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    5. Huang, Zhongyi & Chraibi, Mohcine & Cao, Shuchao & Huang, Chuanli & Fang, Zhiming & Song, Weiguo, 2019. "A microscopic method for the evaluating of continuous pedestrian dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Li, Zexu & Fang, Lei, 2024. "On the ideal gas law for crowds with high pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    7. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    8. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    9. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    10. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    11. Rangel-Galván, Maricruz & Ballinas-Hernández, Ana L. & Rangel-Galván, Violeta, 2024. "Thermo-inspired model of self-propelled hard disk agents for heterogeneous bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    12. Zhu, Yu & Chen, Tao & Ding, Ning & Chraibi, Mohcine & Fan, Wei-Cheng, 2021. "Follow people or signs? A novel way-finding method based on experiments and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    13. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    14. Shi, Zhigang & Zhang, Jun & Song, Weiguo, 2021. "Where luggage-related facilities should be placed along passageways in traffic hubs: Right, left, or in the middle?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    15. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    16. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    17. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.
    19. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    20. Wang, Xinjian & Liu, Zhengjiang & Wang, Jin & Loughney, Sean & Yang, Zaili & Gao, Xiaowei, 2021. "Experimental study on individual walking speed during emergency evacuation with the influence of ship motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120302181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.