IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v544y2020ics0378437119311185.html
   My bibliography  Save this article

A stochastic epidemic model with two quarantine states and limited carrying capacity for quarantine

Author

Listed:
  • Amador, J.
  • Gómez-Corral, A.

Abstract

We study extreme values in an SIQS (susceptible → infectious → quarantined → susceptible) model with two different states for quarantine, termed quarantined susceptible and quarantined infective, and limited carrying capacity for the quarantine compartment. The aim is to characterize the probability distribution of various stochastic descriptors, such as the random length of an outbreak, the time until the quarantine compartment is full for the first time, the maximum number of simultaneously quarantined individuals, and the maximum number of simultaneously infected individuals during an outbreak. For illustrative purposes, a numerical study of the model is performed to show the influence of certain key parameters on the spread of a disease amongst a homogeneously mixing community of individuals.

Suggested Citation

  • Amador, J. & Gómez-Corral, A., 2020. "A stochastic epidemic model with two quarantine states and limited carrying capacity for quarantine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
  • Handle: RePEc:eee:phsmap:v:544:y:2020:i:c:s0378437119311185
    DOI: 10.1016/j.physa.2019.121899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311185
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clancy, Damian, 2014. "SIR epidemic models with general infectious period distribution," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 1-5.
    2. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    3. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    4. Chen, Yiliang & Wen, Buyu & Teng, Zhidong, 2018. "The global dynamics for a stochastic SIS epidemic model with isolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1604-1624.
    5. Economou, A. & Gómez-Corral, A. & López-García, M., 2015. "A stochastic SIS epidemic model with heterogeneous contacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 78-97.
    6. Wei, Fengying & Chen, Fangxiang, 2016. "Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 99-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Gómez-Corral, A. & Lopez-Herrero, M.J. & Taipe, D., 2023. "A Markovian epidemic model in a resource-limited environment," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Antonio Gómez-Corral & Martín López-García & Maria Jesus Lopez-Herrero & Diana Taipe, 2020. "On First-Passage Times and Sojourn Times in Finite QBD Processes and Their Applications in Epidemics," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
    5. Ammar Yasir & Xiaojian Hu & Munir Ahmad & Abdul Rauf & Jingwen Shi & Saba Ali Nasir, 2020. "Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach," IJERPH, MDPI, vol. 17(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Caraballo, T. & Settati, A. & Lahrouz, A. & Boutouil, S. & Harchaoui, B., 2024. "On the stochastic threshold of the COVID-19 epidemic model incorporating jump perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    5. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    6. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    7. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    9. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," Papers 1505.06946, arXiv.org.
    10. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    11. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    12. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    13. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    14. Simon, Matthieu, 2020. "SIR epidemics with stochastic infectious periods," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4252-4274.
    15. Fahimi, Milad & Nouri, Kazem & Torkzadeh, Leila, 2020. "Chaos in a stochastic cancer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2024. "Efficient inverse $Z$-transform and Wiener-Hopf factorization," Papers 2404.19290, arXiv.org, revised May 2024.
    17. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    18. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    19. Antonio Gómez-Corral & Martín López-García & Maria Jesus Lopez-Herrero & Diana Taipe, 2020. "On First-Passage Times and Sojourn Times in Finite QBD Processes and Their Applications in Epidemics," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
    20. Runhuan Feng & Pingping Jiang & Hans Volkmer, 2020. "Geometric Brownian motion with affine drift and its time-integral," Papers 2012.09661, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:544:y:2020:i:c:s0378437119311185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.