IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics037843711931917x.html
   My bibliography  Save this article

Global exponential stability of high-order Hopfield neural networks with state-dependent impulses

Author

Listed:
  • He, Zhilong
  • Li, Chuandong
  • Li, Hongfei
  • Zhang, Qiangqiang

Abstract

In this paper, we discuss the stability of high-order Hopfield neural networks with state-dependent impulses. Under some necessary assumptions, that every solution of the considered system intersects each impulsive surface exactly once is proved. Meanwhile, by using B-equivalence method, the considered system can be simplified to a system with fixed-time impulses. Moreover, some sufficient criteria are derived to ensure the stability between high-order Hopfield neural networks with state-dependent impulses and the corresponding system with fixed-time impulses. The main results show that the stability of high-order Hopfield neural networks with state-dependent impulses maintains no matter the stable continuous subsystems with unstabilizing impulses or the unstable continuous subsystems with stabilizing impulses. Finally, some numerical examples are given to illustrate the effectiveness of our results.

Suggested Citation

  • He, Zhilong & Li, Chuandong & Li, Hongfei & Zhang, Qiangqiang, 2020. "Global exponential stability of high-order Hopfield neural networks with state-dependent impulses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s037843711931917x
    DOI: 10.1016/j.physa.2019.123434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931917X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamad, Sannay, 2007. "Exponential stability in Hopfield-type neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 456-467.
    2. Nie, Linfei & Teng, Zhidong & Hu, Lin & Peng, Jigen, 2009. "Existence and stability of periodic solution of a predator–prey model with state-dependent impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2122-2134.
    3. Zhang, Huiying & Xia, Yonghui, 2008. "Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1076-1082.
    4. Yang, Xueyan & Peng, Dongxue & Lv, Xiaoxiao & Li, Xiaodi, 2019. "Recent progress in impulsive control systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 244-268.
    5. Li, Xiaodi & Yang, Xueyan & Huang, Tingwen, 2019. "Persistence of delayed cooperative models: Impulsive control method," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 130-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan, Mingchen & Li, Chuandong, 2022. "Stability analysis of state-dependent impulsive systems via a new two-sided looped functional," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. He, Zhilong & Li, Chuandong & Li, Yi & Cao, Zhengran & Zhang, Xiaoyu, 2021. "Local synchronization of nonlinear dynamical networks with hybrid impulsive saturation control inputs," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    2. Wang, Yaqi & Lu, Jianquan & Cao, Jinde & Huang, Wei & Guo, Jianhua & Wei, Yun, 2020. "Input-to-state stability of the road transport system via cyber–physical optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 3-12.
    3. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Eren Demir & Shola Adeyemi & Andre Pascal Kengne & Gbenga A. Kayode & Adekunle Adeoti, 2021. "HIV‐MSS: A user‐friendly management support system for better planning of HIV care services," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(5), pages 1847-1860, September.
    5. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    6. Wu, Shuchen & Sun, Xiaohui & Li, Xiaodi & Wang, Haipeng, 2020. "On controllability and observability of impulsive control systems with delayed impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 65-78.
    7. Zhao, Shiyi & Pan, Yingnan & Du, Peihao & Liang, Hongjing, 2020. "Adaptive control for non-affine nonlinear systems with input saturation and output dead zone," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. Xu, Bingji & Xu, Yuan & He, Linman, 2012. "LMI-based stability analysis of impulsive high-order Hopfield-type neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 86(C), pages 67-77.
    9. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    10. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    12. Bei Zhang & Yonghui Xia & Lijuan Zhu & Haidong Liu & Longfei Gu, 2019. "Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach," Mathematics, MDPI, vol. 7(8), pages 1-10, August.
    13. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    14. Gonzalo Armienta [y otros] & Eric Tremolada Álvarez (editor) Author-Email, 2020. "Conjuntos geopolíticos, regionalización y procesos de integración en el siglo XXI," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1215.
    15. Sun, Kaibiao & Zhang, Tonghua & Tian, Yuan, 2017. "Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 253-271.
    16. Gani Stamov & Ivanka Stamova & George Venkov & Trayan Stamov & Cvetelina Spirova, 2020. "Global Stability of Integral Manifolds for Reaction–Diffusion Delayed Neural Networks of Cohen–Grossberg-Type under Variable Impulsive Perturbations," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    17. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Tian, Yuan & Sun, Kaibiao & Chen, Lansun, 2011. "Modelling and qualitative analysis of a predator–prey system with state-dependent impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 318-331.
    20. Gani Stamov & Ivanka Stamova, 2019. "Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds," Mathematics, MDPI, vol. 7(11), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s037843711931917x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.