IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics0378437119319168.html
   My bibliography  Save this article

A comprehensive presentation on nanoparticles electrical conductivity of nanofluids: Statistical study concerned effects of temperature, nanoparticles type and solid volume concentration

Author

Listed:
  • Geng, Yuancheng
  • Khodadadi, Hossein
  • Karimipour, Arash
  • Reza Safaei, Mohammad
  • Nguyen, Truong Khang

Abstract

In this paper, the effect of base fluid, temperature, solid volume concentration and nanoparticle type on electrical conductivity of nanofluid is reviewed for the first time. The work involves discussing the effect of base fluid, temperature, solid volume concentration and nanoparticle type on electrical conductivity of nanofluid among academic analysis of recent studies. The achievements imply that the electrical conductivity generally increases as temperature and solid volume fraction increases. Moreover it should be mentioned that the influence of temperature improvement is not as effective as the nanoparticles concentrations.

Suggested Citation

  • Geng, Yuancheng & Khodadadi, Hossein & Karimipour, Arash & Reza Safaei, Mohammad & Nguyen, Truong Khang, 2020. "A comprehensive presentation on nanoparticles electrical conductivity of nanofluids: Statistical study concerned effects of temperature, nanoparticles type and solid volume concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119319168
    DOI: 10.1016/j.physa.2019.123432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319168
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    2. Taherian, Hessam & Alvarado, Jorge L. & Languri, Ehsan M., 2018. "Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 2: Experimental verification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4337-4344.
    3. Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
    4. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    5. Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
    6. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    7. Taherian, Hessam & Alvarado, Jorge L. & Languri, Ehsan M., 2018. "Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 1: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4326-4336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Ahmed, Waqar & Kazi, S.N. & Chowdhury, Z.Z. & Johan, Mohd Rafie Bin & Mehmood, Shahid & Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Gul, M. & Ahmad, Muhammad Shakeel, 2021. "Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+Al2O3+TiO2/DW based ternary hybrid nanofluids in a square flow conduit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    4. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    5. Nidhal Ben Khedher & Fatih Selimefendigil & Lioua Kolsi & Walid Aich & Lotfi Ben Said & Ismail Boukholda, 2022. "Performance Optimization of a Thermoelectric Device by Using a Shear Thinning Nanofluid and Rotating Cylinder in a Cavity with Ventilation Ports," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    6. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
    7. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    8. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    9. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    10. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    11. Arunkumar, T. & Lim, Hyeong Woo & Denkenberger, David & Lee, Sang Joon, 2022. "A review on carbonized natural green flora for solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    13. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    14. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    15. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    16. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    17. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    18. Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
    19. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    20. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119319168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.