IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics0378437119318709.html
   My bibliography  Save this article

Model comparison of GM(1,1) and DGM(1,1) based on Monte-Carlo simulation

Author

Listed:
  • Wang, Zheng-Xin
  • Li, Dan-Dan
  • Zheng, Hong-Hao

Abstract

Discrete grey model (DGM(1,1)) is considered to be superior to grey model (GM(1,1)) because it can completely simulate the pure exponential sequences. However, owing to practical data generation process is interfered by random factors, the superiority of DGM(1,1) model to GM(1,1) model cannot be widely and reliably validated in practical applications. Therefore, by utilizing the Monte-Carlo simulation method, groups of completely random sequences conforming to different distributions are randomly generated and the predictive capabilities of the two models are compared. In addition, the novel grey models of fractional order accumulation (FGM(1,1) and FDGM(1,1)) are introduced for further comparison. The results show that the predictive capabilities of the two models for random sequences conforming to normal distribution are nearly equivalent. However, the predictive capabilities of DGM(1,1) model for the other three kinds of random sequences are all superior to those of GM(1,1) model. The parameters change of completely random sequences influences the predictive capabilities of the two models. The parameters change of random sequences with exponential trend can influence the predictive capability of GM(1,1) model while has no significant influence on the predictive capability of DGM(1,1) model.

Suggested Citation

  • Wang, Zheng-Xin & Li, Dan-Dan & Zheng, Hong-Hao, 2020. "Model comparison of GM(1,1) and DGM(1,1) based on Monte-Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318709
    DOI: 10.1016/j.physa.2019.123341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119318709
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    2. Gatabazi, P. & Mba, J.C. & Pindza, E. & Labuschagne, C., 2019. "Grey Lotka–Volterra models with application to cryptocurrencies adoption," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 47-57.
    3. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    4. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    5. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    6. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    3. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    4. Cao, Xin & Liu, Chang & Wu, Mingxuan & Li, Zhi & Wang, Yihan & Wen, Zongguo, 2023. "Heterogeneity and connection in the spatial–temporal evolution trend of China’s energy consumption at provincial level," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zeng & Shuliang Li & Wei Meng & Dehai Zhang, 2019. "An improved gray prediction model for China’s beef consumption forecasting," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
    2. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    3. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    4. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    6. Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
    7. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    8. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    9. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    10. Lihong Wang & Kedong Yin & Yun Cao & Xuemei Li, 2018. "A New Grey Relational Analysis Model Based on the Characteristic of Inscribed Core (IC-GRA) and Its Application on Seven-Pilot Carbon Trading Markets of China," IJERPH, MDPI, vol. 16(1), pages 1-16, December.
    11. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    13. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    14. Tong, Mingyu & Dong, Jingrong & Luo, Xilin & Yin, Dejun & Duan, Huiming, 2022. "Coal consumption forecasting using an optimized grey model: The case of the world's top three coal consumers," Energy, Elsevier, vol. 242(C).
    15. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    16. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
    17. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    18. Zhou, Wenhao & Zeng, Bo & Wang, Jianzhou & Luo, Xiaoshuang & Liu, Xianzhou, 2021. "Forecasting Chinese carbon emissions using a novel grey rolling prediction model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    19. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    20. Deng, Yanqiao & Ma, Xin & Zhang, Peng & Cai, Yubin, 2022. "Multi-step ahead forecasting of daily urban gas load in Chengdu using a Tanimoto kernel-based NAR model and Whale optimization," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.