IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics037843711931684x.html
   My bibliography  Save this article

The aggregation of multiplex networks based on the similarity of networks

Author

Listed:
  • Li, Liqiang
  • Liu, Jing

Abstract

Many complex systems can be represented as networks composed of different types of interactions, which are categorized as links belonging to different layers, forming multiplex networks (MNs). In order to simplify the study of MNs, many methods for aggregating MNs have been proposed, but the aggregation of MNs still faces two challenges. The first one is how to measure the destruction of original MN’s structure after they are aggregated and the other is how to meet different requirements for the integrity of network structures for different studies. For the first one, we design an efficient and novelty index named as similarity of MNs (SMNs) for measuring the MN’s structural similarity between original and simplified MNs. For the second one, a method for aggregating MNs, named as AMNs, is proposed to compromise the simplification and maintain the core structure of MNs. Several representative synthetic networks are used to evaluate the reliability of AMNs. Moreover, AMNs is applied to some real-life MNs, including biology, human society, and transportation MNs. Experimental results demonstrate positively that the proposed approach AMNs can simplify the MNs effectively under different requirements.

Suggested Citation

  • Li, Liqiang & Liu, Jing, 2020. "The aggregation of multiplex networks based on the similarity of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s037843711931684x
    DOI: 10.1016/j.physa.2019.122976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931684X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    2. Kk{e}stutis Baltakys & Juho Kanniainen & Frank Emmert-Streib, 2017. "Multilayer Aggregation with Statistical Validation: Application to Investor Networks," Papers 1708.09850, arXiv.org, revised May 2018.
    3. Wang, Xiaodong & Liu, Jing, 2017. "A layer reduction based community detection algorithm on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 244-252.
    4. Manlio De Domenico & Vincenzo Nicosia & Alexandre Arenas & Vito Latora, 2015. "Structural reducibility of multilayer networks," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    2. Hao Xu & Niu Niu & Dongmei Li & Chengjie Wang, 2024. "A Dynamic Evolutionary Analysis of the Vulnerability of Global Food Trade Networks," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    3. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    4. Zhu, Xuzhen & Wang, Ruijie & Wang, Zexun & Chen, Xiaolong & Wang, Wei & Cai, Shimin, 2019. "Double-edged sword effect of edge overlap on asymmetrically interacting spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 617-624.
    5. Khomami, Mohammad Mehdi Daliri & Meybodi, Mohammad Reza & Rezvanian, Alireza, 2024. "Exploring social networks through stochastic multilayer graph modeling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    7. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    8. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    9. A. Baronchelli & T.E. Uberti, 2018. "Exports and FDI: comparing networks in the new millennium," Working Paper CRENoS 201813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    10. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
    11. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    12. Shi, Qing & Sun, Xiaoqi & Xu, Man & Wang, Mengjiao, 2022. "The multiplex network structure of global cobalt industry chain," Resources Policy, Elsevier, vol. 76(C).
    13. Paluch, Robert & Gajewski, Łukasz G. & Suchecki, Krzysztof & Hołyst, Janusz A., 2021. "Impact of interactions between layers on source localization in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Aldasoro, Iñaki & Alves, Iván, 2018. "Multiplex interbank networks and systemic importance: An application to European data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 17-37.
    15. Kosztyán, Zsolt T. & Csizmadia, Tibor & Katona, Attila I., 2021. "SIMILAR – Systematic iterative multilayer literature review method," Journal of Informetrics, Elsevier, vol. 15(1).
    16. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    17. Arvis, Jean-Francois, 2013. "How many dimensions do we trade in ? product space geometry and latent comparative advantage," Policy Research Working Paper Series 6478, The World Bank.
    18. Ma, Yu & Wang, Minxi & Li, Xin, 2022. "Analysis of the characteristics and stability of the global complex nickel ore trade network," Resources Policy, Elsevier, vol. 79(C).
    19. Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    20. Michael Lebacher & Paul W. Thurner & Göran Kauermann, 2021. "Censored regression for modelling small arms trade volumes and its ‘Forensic’ use for exploring unreported trades," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 909-933, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s037843711931684x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.