IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v471y2017icp244-252.html
   My bibliography  Save this article

A layer reduction based community detection algorithm on multiplex networks

Author

Listed:
  • Wang, Xiaodong
  • Liu, Jing

Abstract

Detecting hidden communities is important for the analysis of complex networks. However, many algorithms have been designed for single layer networks (SLNs) while just a few approaches have been designed for multiplex networks (MNs). In this paper, we propose an algorithm based on layer reduction for detecting communities on MNs, which is termed as LRCD-MNs. First, we improve a layer reduction algorithm termed as neighaggre to combine similar layers and keep others separated. Then, we use neighaggre to find the community structure hidden in MNs. Experiments on real-life networks show that neighaggre can obtain higher relative entropy than the other algorithm. Moreover, we apply LRCD-MNs on some real-life and synthetic multiplex networks and the results demonstrate that, although LRCD-MNs does not have the advantage in terms of modularity, it can obtain higher values of surprise, which is used to evaluate the quality of partitions of a network.

Suggested Citation

  • Wang, Xiaodong & Liu, Jing, 2017. "A layer reduction based community detection algorithm on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 244-252.
  • Handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:244-252
    DOI: 10.1016/j.physa.2016.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711630841X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi-Majd, Amir-Mohsen & Fathian, Mohammad & Makrehchi, Masoud, 2018. "Consensus-based methodology for detection communities in multilayered networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 547-558.
    2. Li, Liqiang & Liu, Jing, 2020. "The aggregation of multiplex networks based on the similarity of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:244-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.