IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v538y2020ics0378437119314232.html
   My bibliography  Save this article

Natural convection in nanofluid filled and partially heated annulus: Effect of different arrangements of heaters

Author

Listed:
  • Bouzerzour, Abdeslem
  • Djezzar, Mahfoud
  • Oztop, Hakan F.
  • Tayebi, Tahar
  • Abu-Hamdeh, Nidal

Abstract

The natural convection in a Cu–water nanofluid filled and partially heated annulus between two elliptical cylinders is numerically analyzed. A cold temperature Tc is imposed on the outer cylinder while heaters are placed on the inner cylinder wall in three different configurations. The flow governing equations are written under the Vorticity–Stream function dimensionless formulation and solved with a developed code using FORTRAN platform. The results are given by the finite-volume method in the ranges of Rayleigh number (103

Suggested Citation

  • Bouzerzour, Abdeslem & Djezzar, Mahfoud & Oztop, Hakan F. & Tayebi, Tahar & Abu-Hamdeh, Nidal, 2020. "Natural convection in nanofluid filled and partially heated annulus: Effect of different arrangements of heaters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
  • Handle: RePEc:eee:phsmap:v:538:y:2020:i:c:s0378437119314232
    DOI: 10.1016/j.physa.2019.122479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314232
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikh, Nadeem Ahmad & Ali, Farhad & Khan, Ilyas & Gohar, Madeha, 2018. "A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 135-142.
    2. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Anil & Rao, Pentyala Srinivasa, 2023. "Numerical study of periodically heated wall effect on natural convection in an enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 118-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujit Kumar & Om Prakash, 2022. "Improving the Single-Slope Solar Still Performance Using Solar Air Heater with Phase Change Materials," Energies, MDPI, vol. 15(21), pages 1-15, October.
    2. Safari, Vahid & Abolghasemi, Hossein & Kamkari, Babak, 2021. "Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins," Renewable Energy, Elsevier, vol. 174(C), pages 102-121.
    3. Peng, Benli & Sheng, Wenlong & He, Zhengyu & Wang, Hong & Su, Fengmin & Wang, Shikuan, 2022. "Systematic investigations on charging/discharging performances improvement of phase change materials by structured network fins," Energy, Elsevier, vol. 242(C).
    4. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    5. Fouad Othman Mallawi & Malik Zaka Ullah, 2021. "Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    6. Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Puneeth, V. & Manjunatha, S. & Madhukesh, J.K. & Ramesh, G.K., 2021. "Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Visa, Ion & Moldovan, Macedon & Duta, Anca, 2019. "Novel triangle flat plate solar thermal collector for facades integration," Renewable Energy, Elsevier, vol. 143(C), pages 252-262.
    10. Salih, Salah M. & Jalil, Jalal M. & Najim, Saleh E., 2019. "Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM," Renewable Energy, Elsevier, vol. 143(C), pages 1053-1066.
    11. Tassaddiq, Asifa & Khan, I. & Nisar, K.S., 2020. "Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Adamantios G. Papatsounis & Pantelis N. Botsaris, 2022. "Improved Structural Local Thermal Energy Planning Based on Prosumer Profile: Part B," Energies, MDPI, vol. 15(20), pages 1-24, October.
    14. Charvát, Pavel & Klimeš, Lubomír & Pech, Ondřej & Hejčík, Jiří, 2019. "Solar air collector with the solar absorber plate containing a PCM – Environmental chamber experiments and computer simulations," Renewable Energy, Elsevier, vol. 143(C), pages 731-740.
    15. Lari, Muhammad O. & Sahin, Ahmet Z., 2018. "Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications," Renewable Energy, Elsevier, vol. 122(C), pages 98-107.
    16. Balaji, K. & Ganesh Kumar, P. & Sakthivadivel, D. & Vigneswaran, V.S. & Iniyan, S., 2019. "Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube," Renewable Energy, Elsevier, vol. 142(C), pages 62-72.
    17. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:538:y:2020:i:c:s0378437119314232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.