IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312968.html
   My bibliography  Save this article

Nonuniversality of the horizontal visibility graph in inferring series periodicity

Author

Listed:
  • Xiong, Hui
  • Shang, Pengjian
  • He, Jiayi

Abstract

The filter horizontal visibility graph (fHVg) algorithm was recently proposed to detect the hidden periodicity of intrinsically periodic series under the pollution of noise. In this work, we evaluate the reliability of this algorithm by taking into account the effect of finite size and noise pollution, and something intriguing is found. The fHVg is first applied to logistic map with period 2 and 3, and numerical results suggest that the accuracy of fHVg is not affected by the length of tested series. It is effective in analyzing very short time series but sensitive to extrinsic noises. However, the fHVg has unexpected limitations that lead to spurious results. It lacks generality and shows inability when applied to logistic map with period 4 and to the monthly mean temperature dataset from real-world.

Suggested Citation

  • Xiong, Hui & Shang, Pengjian & He, Jiayi, 2019. "Nonuniversality of the horizontal visibility graph in inferring series periodicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312968
    DOI: 10.1016/j.physa.2019.122234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312968
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Hui & Shang, Pengjian & Bian, Songhan, 2017. "Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 70-84.
    2. Lucas Lacasa & Ryan Flanagan, 2016. "Irreversibility of financial time series: a graph-theoretical approach," Papers 1601.01980, arXiv.org.
    3. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    4. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    5. Chen, Wei-Shing, 2011. "Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1332-1342.
    6. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    7. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Hui & Shang, Pengjian & Xia, Jianan & Wang, Jing, 2018. "Time irreversibility and intrinsics revealing of series with complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 241-249.
    2. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    3. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    5. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    6. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    9. Pal, Mayukha & Kiran, V. Satya & Rao, P. Madhusudana & Manimaran, P., 2016. "Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 288-293.
    10. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    11. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    12. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    13. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    14. Yang, Yan-Hong & Xie, Wen-Jie & Li, Ming-Xia & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2017. "Statistical properties of user activity fluctuations in virtual worlds," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 271-278.
    15. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    17. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    18. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    19. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    20. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.