IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v531y2019ics0378437119310313.html
   My bibliography  Save this article

Consensus and optimal speed advisory model for mixed traffic at an isolated signalized intersection

Author

Listed:
  • Yu, Shaowei
  • Fu, Rui
  • Guo, Yingshi
  • Xin, Qi
  • Shi, Zhongke

Abstract

Due to the accessibility for connected vehicle (CV) to obtain the V2X covered traffic conditions and signal phase and timing (SPaT) information, the CV becomes able to follow its predecessors and adjust its speed in a different way with comparison to human driving vehicle (HDV). Aiming at promoting energy economy and keeping safety, a consensus and optimal speed advisory model(SAM) is proposed for CV platoon at an isolated signalized intersection in the presence of mixed traffic scenario. To ensure that CV followers track their leader’s speed and time headway spacing with uniform performance being achieved, a consensus based CV platoon model is proposed with V2X network topology being taken into account. To determine average desired speed of the leader and prevent itself from red light running, two kinds of intersection passing decisions considering amber light duration time are presented for CV and HDV, respectively. To plan a speed trajectory for CV leader, a safety and energy conservation oriented SAM based on trigonometric-curve and logistic-curve is employed to guide CV leader approaching and departing from signalized intersection in a smooth driving behavior at the moment of queue discharging entirely at green light. Numerical simulations show that taking speed profile governed by consensus and optimal SAM as CV platoon’s recommended speed can improve safety and fuel economy performance of the mixed traffic on signal controlled highways.

Suggested Citation

  • Yu, Shaowei & Fu, Rui & Guo, Yingshi & Xin, Qi & Shi, Zhongke, 2019. "Consensus and optimal speed advisory model for mixed traffic at an isolated signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
  • Handle: RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119310313
    DOI: 10.1016/j.physa.2019.121789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119310313
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Kai Liu & Dong Liu & Cheng Li & Toshiyuki Yamamoto, 2019. "Eco-Speed Guidance for the Mixed Traffic of Electric Vehicles and Internal Combustion Engine Vehicles at an Isolated Signalized Intersection," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    4. Xinqiang Chen & Jinquan Lu & Jiansen Zhao & Zhijian Qu & Yongsheng Yang & Jiangfeng Xian, 2020. "Traffic Flow Prediction at Varied Time Scales via Ensemble Empirical Mode Decomposition and Artificial Neural Network," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    5. Chen, Jianzhong & Liang, Huan & Li, Jing & Xu, Zhaoxin, 2021. "A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Wu, Zhibei & Sun, Jitao & Xu, Ruihua, 2021. "Consensus-based connected vehicles platoon control via impulsive control method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    8. Igor Dirnbach & Tibor Kubjatko & Eduard Kolla & Ján Ondruš & Željko Šarić, 2020. "Methodology Designed to Evaluate Accidents at Intersection Crossings with Respect to Forensic Purposes and Transport Sustainability," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    9. Chen, Jianzhong & Li, Jing & Xu, Zhaoxin & Wu, Xiaobao, 2022. "Cooperative optimal control for connected and automated vehicles platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Xin, Qi & Fu, Rui & Ukkusuri, Satish V. & Yu, Shaowei & Jiang, Rui, 2021. "Modeling and impact analysis of connected vehicle merging accounting for mainline random length tight-platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119310313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.