IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp809-824.html
   My bibliography  Save this article

Analyzing and predicting network public opinion evolution based on group persuasion force of populism

Author

Listed:
  • Fang, Siwei
  • Zhao, Nan
  • Chen, Nan
  • Xiong, Fei
  • Yi, Yunhui

Abstract

The classic individual opinion interaction model, which can effectively explore rule of Individual interaction and trend of public opinion evolution, is frequently used to study evolution of network public opinion, On basis of that, we adopt populism tendency of individual to improve opinion discrepancy threshold and optimize traditional rules of individual opinion interactive. Furthermore, we propose creatively expression of improving group persuasion force based on populism. On this foundation, GPF-NP model is constructed to analyze and predict evolution of opinions of netizens in network populism events. By simulation, we draw conclusion that scale of non-extreme populism play a vital role in evolution of network public opinion. Finally, some proposals are proposed from the simulation result to guide or prevent development of network negative public opinion.

Suggested Citation

  • Fang, Siwei & Zhao, Nan & Chen, Nan & Xiong, Fei & Yi, Yunhui, 2019. "Analyzing and predicting network public opinion evolution based on group persuasion force of populism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 809-824.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:809-824
    DOI: 10.1016/j.physa.2019.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119304248
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Tessone & R. Toral, 2004. "Neighborhood models of minority opinion spreading," Computing in Economics and Finance 2004 206, Society for Computational Economics.
    2. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    3. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    4. F. Slanina & H. Lavicka, 2003. "Analytical results for the Sznajd model of opinion formation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 35(2), pages 279-288, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xujian Zhao & Wei Li, 2021. "Trend Prediction of Event Popularity from Microblogs," Future Internet, MDPI, vol. 13(9), pages 1-13, August.
    2. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    3. Tao, Chen & Zhong, Guang-Yan & Li, Jiang-Cheng, 2023. "Dynamic correlation and risk resonance among industries of Chinese stock market: New evidence from time–frequency domain and complex network perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    2. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    3. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    4. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    6. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    7. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Pérez-Llanos, Mayte & Pinasco, Juan Pablo & Saintier, Nicolas, 2020. "Opinion attractiveness and its effect in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    9. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Galam, Serge, 2010. "Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3619-3631.
    13. Yaofeng Zhang & Renbin Xiao, 2015. "Modeling and Simulation of Polarization in Internet Group Opinions Based on Cellular Automata," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-15, August.
    14. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Discerning media bias within a network of political allies and opponents: The idealized example of a biased coin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    16. Mehrdad Agha Mohammad Ali Kermani & Reza Ghesmati & Masoud Jalayer, 2018. "Opinion-Aware Influence Maximization: How To Maximize A Favorite Opinion In A Social Network?," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    17. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    18. Sven Banisch & Eckehard Olbrich, 2021. "An Argument Communication Model of Polarization and Ideological Alignment," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(1), pages 1-1.
    19. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    20. Gani Aldashev & Timoteo Carletti & Simone Righi, 2010. "Adaptive Expectations, Confirmatory Bias, and Informational Efficiency," Papers 1009.5075, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:809-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.